СОФИЙСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

Физически факултет катедра "Радиофизика и Електроника", бул. "Дж. Баучър" – 5, Б429

Курс "Приложна електродинамика"

Обзор на числените методи за анализ на електродинамични структури

Лектор: доц. д-р Пламен И. Данков

София, ноември 2005 г.

Обзор на числените методи за анализ на електродинамични структури

Теми:

- ▲ Измерими параметри на устройствата, използвани при анализа
- ▲ Приближени методи: СВЧ калкулатори и схемни симулатори
- ▲ Съвременни числени методи: структурни симулатори (2D,2½D, 3D)
- ★ Квази-оптични и статистически методи : анализ на радиоканали

2

Как могат да се анализират тези устройства и схеми?

Как могат да се анализират тези устройства?

Числени методи и структурни симулатори ⁴

Как могат да се анализират радио-комуникационни среди?

Квази-оптични и дифракционни методи 6

Типове САД програми и симулатори

- Микровълнови калкулатори:
- ЕМ структурни симулатори:
- Микровълнови схемни симулатори:

Как могат да се анализират ЕМС проблеми?

3D структурни симулатори

Freeman Dyson, физик: "Днес двигател на научните революции по-често са новите инструменти, отколкото новите концепции" (*Physics World, pp. 33-38, August 1993*)

ОСНОВНИ ВЕЛИЧИНИ, ОПИСВАЩИ МИКРОВЪЛНОВИТЕ УСТРОЙСТВА И СРЕДИ

Примери: микровълнови калкулатори за прости структури и среди

9

<u>Планарни предавателни линии</u>

Параметри:

• геометрични размери: височина, широчина, дължина; материални константи на подложката \mathcal{E}_r , μ_r ; метализация, грапавост и др.

• Електродинамични параметри: характеристичен ипеданс; ефектична диелектрична проницаемост; константи на разпространение и затихване, дължина на вълната във вълновода и др.

10

TRL калкулатор към симулатора Ansoft®SERENADE 8.7

Микровълнови резонатори

Около ±10% пренастройка

около резонансната честота

16

"магнитно-диполен мод"

 $0.5 < R/h < 2; \varepsilon_r \cong 30-50$

15

въздуха)

⇒ Q-фактор ≅ 4000-10000

CARD - DR калкулатор на фирмата Trans-Tech

Cavity Resonant Frequency Calculated Frequency Resonator Parameters 0.000 GHz 6.000 GHz Dr 0.405 in Lr 0.151 in dr Resonator Part Number C8733 - 0405 - 151 - 083 Dr Tcr 0 ppm/C ✓ Auto Ture! Support Part Number SPT - 120 - A- 040 Package Dimensions Do 1.215 in Lo 0.546 in Do -1.215 (Not to Scale) Lt=0.165 Substrate Parameters Lsub 0.050 in % sub 9.80 Type Alumina (99%) ✓ Dielectric Support Standard Parts Ds 0.120 in Ls=0.040 ✓ Ds 0.1	Cavity Configuration File Edit Functions Unit	s <u>T</u> rans-Tech <u>H</u> elp	
Auto Ture: Support Part Number SPT - 120 - A- 040 Package Dimensions Do-1.215 (Not to Scale) Do 1.215 In Lo 0.546 In Do-1.215 (Not to Scale) Substrate Parameters Sub 0.050 In \$sub 9.80 Type Alumina (99%) Image: Composition of the sub Sub 1.215 In Lo 0.546 In Lt=0.165 Image: Composition of the sub Image: Composition of the sub 9.80 Type 1.215 In Image: Composition of the sub 9.80 Image: Composition of the sub Image: Composition of the sub Image: Composition of the sub 9.80 Type Image: Composition of the sub Image: Composition of the sub Image: Composition of the sub 9.80 Image: Composition of the sub Image: Composition of the sub Image: Composition of the sub 1.215 In Image: Composition of the sub Image: Composition of the sub Image: Composition of the sub Image: Composition of the sub Image: Composition of the sub Image: Composition of the sub Image: Composition of the sub Image: Composition of the sub Image: Composition of the sub Image: Composition of the sub Image: Composition of the sub Image: Composition of the sub	Cavity Resonant Frequer Desired Frequency 6.000 GHz Re-Select DR	Calculated Frequency 6.000 GHz Resonator Part Number C8733 - 0405 - 151 - 083	CResonator Parameters Dr 0.405 in Lr 0.151 in dr 0.083 in εr 30.00 30.00 Tcf 0 ppm/C
Do-1.215 (Not to Scale) Substrate Parameters Lt=0.165 Lt=0.165 sub 0.050 in sub 9.80 Type Alumina (99%) Type Dielectric Support Standard Parts Ds=0.120 in sub 0.040 in s 6.30 Ls=0.040 Ds=0.120 None Lt 0.165 in Full Ls=0.040 Lsub=0.050^h Image: Substrate Parameters Sub Sub Sub	Couple to Microstrip	Support Part Number SPT - 120 -A- 040	Package Dimensions Do 1.215 In Lo 0.546 in
↓ ↓	Do=1.215 ()	Not to Scale)	Substrate Parameters L _{sub} 0.050 in ^e sub 9.80 Type Alumina (99%)
	Lr=0.151 Ls=0.040 <	dr-0.083	Dielectric Support Standard Parts Ds= 0.120 : Ls= 0.040 Ds 0.120 in Ls 0.040 in e_{s} 6.30 Tuning Screw Extension None Lt 0.165 in Full
	Lo=0.546	Lsub=0.050 [↑]	

Връзка на резонатора с микролентовата линия

Микровълнови антени

Параметри:

диаграми на насоченост, широчина на главния лъч, ниво на странични листа, коефициент на насочено действие, усилване и др.

Пример за антенен калкулатор: рупори и рефлектори

Шум в устройствата

Параметри:

Коефициент на шум $F_n = (S/N)_{in} / (S/N)_{out}$; NF, dB

шумова температура, при антени: отношение G/T

ЕМС - изследвания

Хигиенни норми за облъчване с нейонизиращи лъчения

21

Пример за G/T калкулатор: отношение "усилване/температура"

Специфична абсорбирана мощност SAR (Specific Absorbtion Rate)

$$SAR = P_{abs} = (E_{local})^2 \times \sigma_{eff} / \rho$$

- SAR за цялото тяло;
- локална SAR за части от тялото

24

където:

 P_{abs} е погълнатата микровълнова мощност във W/kg на единица живо тегло;

- пикова SAR
 - усреднена за 10 g (Eu) или за 1 g (USA)

 E_{local} , V/m, е локалното електрично поле в дадена точка на организма; σ_{eff} и ρ са ефективната проводимост в S/m и плътността на масата в kg/m³ на биологичните тъкани in vivo.

<u>S-параметри на СВЧ-устройства</u>

<u>S - матрица (матрица на разсейване)</u>

$$\hat{\mathbf{b}} = \hat{\mathbf{S}} \hat{\mathbf{a}} \qquad \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{pmatrix} = \begin{pmatrix} S_{11} & \cdots & S_{1N} \\ \vdots & & \vdots \\ S_{N1} & \cdots & S_{NN} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{pmatrix}$$

За 2-раменно устройство (4-полюсник):

Физичен смисъл на S-параметрите на СВЧ устройства

$$S_{ik} = |S_{ik}|e^{-j\varphi_{ik}}$$
Модули: $|S_{ii}| = \frac{|b_i|}{|a_i|} = \Gamma_i$ - коефициент на отражение в i-тото рамо
 $|S_{ik}| = \frac{|b_i|}{|a_k|} = T_{ik}$ - коефициент на преминаване от k-тото в i-тото рамо

Фази:
$$\varphi_{ik} = (\varphi_0)_{ik} + \beta_k l_k + \beta_i l_i$$

- собственото фазово отместване на устройството и електрическите *дължини* на входното и изходното рамо до референтните равнини, където се дефинират S-параметрите

29

Коефициенти на отражение и стояща вълна

 Z_{Load} - товарен импеданс; Z_C - характеристичен импеданс

<u>S-параметри в dB</u>

• Обратни загуби *RL*, dB:

$$(RL)_i = 20.\lg|S_{ii}| = 20.\lg(\rho_i) = 10.\lg\frac{(P_r)_i}{(P_{in})_i}$$

• Загуби на преминаване L, dB:

$$(L)_{ik} = 20.\lg|S_{ik}| = 20.\lg(T_{ik}) = 10.\lg\frac{(P_t)_i}{(P_{in})_k}$$

• Загуби от разсъгласуване *ML*, dB:

$$(ML)_{kk} = 20 \cdot \lg(1 - \rho_k^2) = 10 \cdot \lg \frac{(P_t)_k}{(P_{in})_k}$$

• Внесени загуби *IL*, dB:

$$(IL)_{ik} = (L)_{ik} - (ML)_{kk} \cong (L)_{ik}$$

SWR - калкулатор (калкулатор за S-параметри)

СА**D** за пасивни микровълнови компоненти и схеми

Сравнение на съвременните методи с примери, базирани на съвременни софтуерни продукти

Типичен цикъл на съвременно проектиране на микровълнова система и/или устройство

Област на приложимост на отделните методи

33

- ако устройството е с размери < λ/10 и/или излъчването е слабо, могат да се използват квази-статични RLC-модели
- ако устройството е с размери между 10.λ и/или λ/10 и излъчването е съществено, се използва пълен (full-wave) ЕД анализ с различни техники (MoM, FEM, FDTD)
- ако устройството е с големи размери > 10λ, могат да се използват квази-оптични методи (геометрична и физична оптика, дифракционни методи, лъчево трасиране и др.

Приложения на ЕМ симулатори

- <u>Вълноводи</u> (обемни, планарни, квазиоптични), <u>компоненти</u> коаксиални кабели, преходи, микролентови, лентови, копланарни, процепни и др. планарни линии, обемни вълноводи, насочени отклонители, хибриди, филтри, нереципрочни (феритни) устройста и много други
- <u>Full-wave анализ</u> на MICs, MMICs, многослойни структури, преходи между слоеве, PCB (printedcircuit boards), MCM (multi-chip modules) и др.
- <u>EMC/EMI</u> (апаратура, биологични обекти)
- <u>Антени</u> (планарни антени, рупорни антени, вълноводнопроцепни антени, антенни решетки и др.)
- <u>Резонатори</u> (обемни, диелектрични, планарни и пр.)
- <u>Радарни обекти</u> (RCS Radar cross section)

Примери за типични СВЧ приложения на ЕМ симулатори

Микровълнов 3D компонент

MICs (СВЧ интегрални схеми)

Антена

37

Примери за типични нискочестотни приложения на ЕМ симулатори

Захранващи, екраниращи платки

Нискочестотни ИС

Корпусирани ИС

РСВ платки и layout

38

Примери за квази-оптични приложения на ЕМ симулатори

Два основни проблема на ЕМ-симулатори:

На какви техники се базира съвременния електромагнитен анализ?

Съвременните EM 3D-симулатори генерират собствена среда, в която потребителят относително лесно може да създава и изследва нови пасивни и/или активни електродинамични структури, които сам е изобразил. Тази среда включва три главни компонента:

Три основни типа числени техники:

- Методи на интегралните уравнения: МоМ; приложим за хомогенни и нехомогенни диелектрични тела размери ≅ λ, съдържащи проводници и проводящи повърхности; води до матрици с много елементи ⇒ много неизвестни ⇒ необходими са сериозни компютърни ресурси (скорост и памет)
- Методи на диференциалните уравнения: (FDM, FEM) приложими за взаимно проникващи едно в друго обекти с размери до наколко λ; води до "редки" матрици + паралелни изчислителни процедури ⇒ силна редукция на необходима компютърна памет
- Метод на геометричната теория на дифракцията: (GTD) приложим за големи излъчващи обекти (антени) >> λ, оценка на параметрите в близката и далечна зони

42

• <u>предварителна обработка</u> (pre-processing): включва описание на електро- динамичните параметри на средите, изобразяване на геометрията на различни метални и/или диелектрични 2D/3D обекти (собствен графичен modeler или AutoCAD), дискретизация на обекта (с помощта на потребителя или авто-матично (grid-, mesh-generator), избор на начина на облъчване или възбуждане на структурата (de-embedding scheme), дефиниране на нейните входове и изходи, избор на честотния обхват и пр;

◆ <u>изчислителна процедура</u> (processing, solution): тя се базира обикновено на паралелна изчислителна архитектура, позволяваща найпълно да се използват ресурсите (скорост и памет) на съвременните компютри. Процедурата включва и дискретизация на цялата структура на малки 2D/3D клетки (полигони или тетраедри), в които се прилагат директно Maxwell уравненията и съответните гранични условия;

Следизчислителна обработка (post-processing): включва различни начини на представяне (таблици, графики, изображения) на получените характеристики на структурата: S-параметри, импеданси, коефициенти на отражение и преминаване, топология на E- и H- полетата, диаграми на излъчване в близката и далечната зони и пр. 44

Какви структури могат да се симулират с помощта на 3D и 2¹/₂D симулатори?

истински 3D обекти

Диелектрични и / или метални обекти с крайни размери по трите оси 0х, 0у и 0z. Диелектриците могат да са хомогенни или нехомогенни и могат да проникват един в друг.

Металните слоеве са с крайни размери по трите оси. Диелектриците образуват непроникващи един в друг слоеве, които са ограничени по оста 0z; в напречна посока те са неограничени

САD за пасивни микровълнови компоненти и схеми (2)

Сравнение: схемни модели, структурни модели и хибридни модели

Схемен подход

На ниски честоти устройствата се представят с еквивалентни електрически схеми, вклющващи различни пасивни елементи (R, L, C, SMD-компоненти) и активни елементи (транзистори ВЈТ, FET, HBT, HEMT, pHEMT и пр.); диоди, смесители и др.). Всички тези елементи са представени със свои модели, за които има много богата библиотека.

Пример: Ansoft Serenade (или Ansoft Designer)

Включва два продукта Harmonica (схемен симулатор) и Symphony (системен симулатор - за сигнали в системи)

49

Илюстрация: синтез на произволни електрически вериги с дискретни елементи

Елементи, представени със своите модели: вградени в библиотеката на схемния симулатор или създадени от потребителя

Нискочестотен филтър - схема с разпределени параметри чрез използване на микролентови линни

Последователна L

53

Паралелен С

Layout

Boundary Between Lumped and Distributed Behavior

	in o or greater
	Distributed
	Transmission lines
Voltage, current	
	Radiation possible
Only reactance can shift phase of V or I	
Fields rise and fall at same	

54

Полеви (ЕД) подход

Устройството се дискретизира на още по-малки обекти (клетки; cells) - например до 20-40 клетки на една дължина на вълната. Тук трябва да се изчислят локалните полета или токове на основата на определен електродинамичен числен метод.

Класификация на полевите методи в зависимост от размерността на <u>струкрурата</u>

> 1D - полетата и източниците, които ги създават имат 1 размерност. Пример: едно-проводната предавателна линия, плоските вълни в пространството и др.

2D - полетата и източниците, които ги създават имат 2 размерности - напр. двупроводни предавателни линии, коаксиалните вълноводи, H₁₀-едномодовия правоъгълен вълновод и др.

2½D - полетата имат 3 размерности, но източниците, които ги създават имат само 2 размерности - напр. микролентовите и др. планарни предавателни линии, планарните антени и др. По-принцип, това са всички многослойни планарни структури

ЭD - полетата и източниците имат по 3 размерности - това са всички истински обемни електродинамични обекти

57

Хибриден подход

(едно много ефективно решение на проблема "скорост-точност")

Устройството се разделя на отделни части - едните са с много точни модели, другите са с модели с понижена точност или нямат още модел за описание. Само последните се пресмятат с полеви методи и се изгражда техния нов модел. После цялото устройство се решава със схемен симулатор

МоМ: (интегрален метод на моментите)

- E_i "падащо" електрично поле;
- *S* проводяща повърхност;
- E(r) тангенциалното поле в/у S
- $J_e(r)$ разпределение на тока в/у S
- G(r|r') -Green-функция на средата
- *Z_S* повърхнинен импеданс в/у проводниците

В общия случай, дадена проводяща структура се намира в хомогенна (или нехомогенна) диелектрична среда. Падащото поле индуцира определено разпределение на токовете (електрически и магнитни). Индуцираните токове от своя страна създават такова вторично поле, което заедно с първичното удовлетворят граничните условия върху повърхностите на проводниците.⁶⁷

Разпределение на ел. ток $J_e(r)$ по металната повърхност S

 $J_e(r) = E(r)/Z_s(r) ; r \in S$

Сумарното електрическо поле E(r) около проводниците

 $\boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{E}_i(\boldsymbol{r}) + \int_{s} \boldsymbol{G}(\boldsymbol{r}|\boldsymbol{r'}) \cdot \boldsymbol{J}_e(\boldsymbol{r'}) ds'$

където G(r|r') е диадичната Green-функция за диелектричната среда, която може да се определи (коментар: по-надолу)

След заместване се получава едно *интегрално уравнение* за неизвестното разпределение на електрическия ток $J_e(r)$ върху повърхността *S*

$$Z_s(\mathbf{r}).\mathbf{J}_e(\mathbf{r}) = \mathbf{E}_i(\mathbf{r}) + \int_s \mathbf{G}(\mathbf{r}|\mathbf{r'}).\mathbf{J}_e(\mathbf{r'}) ds'$$

Основна идея на МоМ:

Да се редуцира решаването на интегралното уравнение за неизвестното разпределение на тока до решаване на матрично уравнение с помощта на ефективни изчислителни процедури!

Ако се въведе дискретизация на структурата, това означава системата от интегрални уравнения да се приведе в система от матрични уравнения, които са много по-подходящи за компютърно-базирани методи (числени симулации)

(Забележка: Във времето преди бързите компютри основните усилия в електродинамиката са били да се редуцира времето за изчисления чрез подходящо аналитично манипулиране на уравненията и решенията. Обратно, днес се счита, че по-ефективният подход е предоставяне на изчислителните процедури на бързите компютри с цел да се намали необходимостта от предварителни аналитични манипулации, т.е. предпочитат се директни метоячи).

Обща изчислителна процедура на МоМ:

1. Формулира се еквивалентна задача: реалната физическа структура се заменя със система от еквивалентни дискретни източници.

2. Прилагат се граничните условия: получава се система от уравнения за определяне на неизвестните еквивалентни източници.

3. Дискретизиране на областта, където съществуват еквивалентни ИЗТОЧНИЦИ: представяне на еквивалентните източници като сума по известни базисни функции с неизвестни коефициенти.

4. Тестване на граничните условия: прилагане на граничните условия към дискретизираната структура с цел получаване на система независими уравнения за неизвестните коефициенти пред базисните функции.

5. Решаване на ситемата: (ефективни числени методи).

6. Изчисляване на ноебходимите величини, описващи структурата (post-processing): S-параметри, импеданси, диаграми на излъчване, разпределе-ния на токовете и полетата и пр. 70

Пример: тънка диполна антена

1) Реални жични проводници в хомогенно диелектрично обкръжение, захранвани от източник на хармонични трептения V

2) Проводниците се заменят с еквивалентен ток, разпределен по определен начин, който най-добре описва реалните токове

3) Дискретизация (сегментиране) на проводниците за прилагане на метода на моментите МоМ

71

Общо описание на МоМ с примери:

1. Формулиране на еквивалентната задача: реалната физическа структура се заменя от еквивалентни източници (токове, заряди)

L(f) = *g L* - линеен оператор ($\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial^2 t}$); $f = L^{-1}(g)$

g - ИЗТОЧНИЦИТЕ (възбуждането: токове, заряди); f - ПОЛЕТАТА (отклика)

 $L[G(r|r')] = \delta(r - r')$ - известно частно решение: функцията на Green, когато източниците са точкови. Тази функция за повечето прости структури е известна аналитично $G(r | r') = \frac{e^{-jk} |r-r'|}{|r-r'|}$ $L^{-1}(g) = \int_{s} G(r|r') g(r') dr'$ Пример: функцията на Green за безкрайно хомогенно диелектрично пространство

еквивалентни източници: токове J(r) и заряди q(r)

(...отново примера за тънка диполна антена)

Реалните проводници на антената се заменят с еквивалентен ток, разпределен по определен начин, който най-добре описва реалните токове: $J_e = n \mathbf{x} H$; *n* - нормала; *H* - магнитното поле върху *S*

<u>Различни случаи:</u>

за плътни проводници или за безкрайно тънки повърхности:

$$n \downarrow_{J_e} J_e = I$$

 $\boldsymbol{J}_{\boldsymbol{e}} = n \; \mathbf{x} \; H$ - по повърхността

за тръбни проводници или за слоеве с крайна дебелина:

$$J = J_e + J_i \text{ no } \partial Beme \text{ nobspx} Hocmmu$$

2. Прилагане на гранични условия за еквивалентните източници: целта е получаване на *система от уравнения* за определяне на неизвестните еквивалентни източници.

Пример: прилагане на граничните условия на идеални електрични стени за възбуждащото (първично) и излъченото (вторично) ел. поле

$$-n \ge E(r) = n \ge E_i(r)$$

$$\Rightarrow n \ge [j \omega \mu/4\pi . \int_s G(r|r') . J_e(r') ds' + 1/4\pi \varepsilon \nabla \int_s G(r|r') . q_e(r') ds' = n \ge E_i(r)$$

...отново примера за диполната антена (без свободни заряди), за която $2a \ll \lambda$, и се разглеждат само токовете $J_e(x)$ по оста на антената

$$j\omega\mu/4\pi$$
. $\int_{s} \boldsymbol{G}(x|x').\boldsymbol{J}_{\boldsymbol{e}}(x')ds' = \boldsymbol{E}_{\boldsymbol{i}}(x) = V.\delta(x - x_{gap}),$

където x_{gap} е местоположението на захранващия източник $V_{.74}$

... при по-сложна кривина на тънкия проводник на антената може да се въведе криволинейна координата *l* по оста му: сега задачата може да се реши само числено след дискретизация!...

...продължение на общото описание на МоМ:

3. Дискретизиране на областта, където съществуват еквивалентни източници: целта е чрез дискретизиране на отклика (полетата) на структурата тези източници да се представят като алгебрична сума от известни *базисни функции* с неизвестни коефициенти.

$$= \sum \beta_n b_n \qquad \longrightarrow \qquad \sum \beta_n L$$

 $\sum \beta_n L(b_n) = g$

 b_n - базисни функции; n = 1, 2, 3, ... N-1, N (известни); β_n - коефициенти пред базисните функции (неизвестни)

4. Тестване на граничните условия: целта е чрез чрез е прилагане на *граничните условия* към дискретизираната структура да се получи система от независими уравнения за *неизвестните коефициенти* β_n пред базисните функции b_n , която подлежи на числено решение.

По-надолу е описана общата процедура и са дадени примери:

• Дефинираме понятието "вътрешно произведение" по правилото $\langle Lf, g \rangle = \langle f, L^a g \rangle$, където L^a е присъединен опреатор ($L^a = L$)

• Нека отклика (полетата) на структурата е *дискретизиран* чрез сумата $f = \sum \beta_n b_n$ по базисните функции $b_1, b_2, b_3,...$

• Въвеждаме система от такива тестващи функции: $t_1, t_2, t_3,...$ за които вътрешното произведение се прилага към граничните условия: $\sum \beta_n \langle t_m, Lb_n \rangle = \langle t_m, g \rangle = g_m$

• Следователно процедурата "*тестване на граничните условия*" е дискретизиране на източниците чрез въвеждане на тестващи функции, които в общия случай са различни от базисните. Ако $b_n \equiv t_n$, процедурата е известна като метод на Galerkin.⁷⁷ • Така, накрая се получава едно матрично уравнение за неизвестните коефициенти β_n (вм. интегралното L(f) = g или $f = L^{-1}(g)$)

$[L_{mn}][\beta_n] = [g_m]$ или $[\beta_n] = [L_{mn}^{-1}][g_m]$,

където $[\beta_n]$ - стълб на неизвестните коефициенти; $[g_m]$ - стълб на еквивалентните източници; $[L_{mn}]$ - матрица от *N*-ти ранг, която включва комбинации от вътрешни произведения на известните тестващи и базисни функции:

$$\begin{bmatrix} \boldsymbol{\beta}_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \vdots \end{bmatrix} \quad \begin{bmatrix} \boldsymbol{g}_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{g}_1 \\ \boldsymbol{g}_2 \\ \vdots \end{bmatrix} \quad \begin{bmatrix} \boldsymbol{L}_{mn} \end{bmatrix} = \begin{bmatrix} \langle t_1, \boldsymbol{L}b_1 \rangle & \langle t_1, \boldsymbol{L}b_2 \rangle & \cdots \\ \langle t_2, \boldsymbol{L}b_1 \rangle & \langle t_2, \boldsymbol{L}b_2 \rangle & \cdots \\ \vdots & \vdots & \vdots \end{bmatrix}$$

Така, окончателното решение е: $f = [b_n][\beta_n] = [b_n][L_{mn}^{-1}][g_m]$, което може да бъде точно или приближено в зависимост от подходящия избор на $[b_n] = [b_1, b_2, b_3, ...]$ и $[t_n] = [t_1, t_2, t_3, ...]$

Избор на базисни и тестващи функции: пример N = 5; ос: Ох

e₁ - единичен вектор по оста; С - тестващ контур по повърхността

81

- гъвкавост на моделирането на токовете и граничните условия при произволни геометрични структури;
- висока изглаждаща способност, бърза (с малко стъпки) и достоверна апроксимация на точното решение;
- достатъчна математическа простота с цел постигане на висока скорост на изчислителната процедура.

Пример за прилагане на ефективна комбинация за едномерни електродинамични задачи: триъгълни базисни функции и правоъгълни тестващи функции

Пример: сходимост на MoM (процедура на Galerkin) с правоъгълни (■) или триъгълни (▲) базисни и тестващи функции:

*N, брой неизве*стни

МоМ за структури с проводящи повърхности:

Както за едномерните (жични) проводящи структури, МоМ може да се приложи и за проводящи (2D или 3D) повърхности на тела. Основната разлика е въвеждане на нови базисни $b_n(r_s)$ или тестващи $t_n(r_s)$ функции, които съществуват на повърхността и трябва да моделират двете ортогонални съставящи на тока \Rightarrow двумерен ток. Сега тези функции са дефинирани за повърхнинните координати r_s (вместо за линейната координата l) и интегрирането става по тях.

Дискретизацията при сложните (2D или 3D) повърхности е значително по-трудна, отколкото в едномерния случай.

Дадените примери илюстрират големите потенциални възможности за пълна дискретизация на произволни повърхности с помощта на малки полигони (клетки) с триъгълна форма. Това свойство на триъгълните клетки предопределя избора на подобни базисни функции при дискретизация на повърхностните токове.

МоМ за апертури и диелектрични тела:

Излъчваща апертура, оградена от идеално-проводящи метални стени

В областта на апертурата се анализира магнитния повърнинен ток:

$M(r) = E_A(r) \times n$

където $E_A(r)$ е разпределението на електричното поле в апертурата.

МоМ може да се използва и при единични хомогенни диелектрични тела. За целта се анализира разпределението на плътността на всеки от двата тока: електричен $J(r) = -H(r) \times n$ и магнитен $M(r) = E(r) \times n$, както във вътрешността на тялото, така и извън него.

При по-сложни и при нехомогенни тела изчисленията с MoM стават тежки и се предпочитат диференциалните методи, напр. РЕМ.

Пример за еднородна дискретизация (по координатната мрежа)

Други симулатори (напр. Ansoft Ensemble) използват само триъгълни клетки за дискретизация на произволни структури

Този начин на дискретизация произвежда повече на брой клетки и, следователно, времето за симулация се увеличава, но за сметка на това точността е висока. При този метод обикновено не се налага потребителя сам да се грижи за дискретизацията: това се извършва автоматично от генератор на клетки в самия симулатор - mesh generator; grid generator

В тези случаи има свободата да се използва различна по вид дискретизация (например: фиксирана и адаптивна)

фиксирана мрежа:

клетките на тази мрежа имат близки размери за различните елементи от структурата

адаптивна мрежа:

клетките на тази мрежа имат различни размери за различните елементи от структурата. Пример: за микролентовата линия са по-малки; за голамата радиална линия - по-големи

Процедура на адаптивна дискретизация при Ansoft Ensemble чрез междинно изчисляване на плътността на тока на всяка стъпка

СОФИЙСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

Физически факултет катедра "Радиофизика и Електроника", бул. "Дж. Баучър" – 5, Б429

101

Курс "Приложна електродинамика"

Обзор на числените методи за анализ на електродинамични структури (продължение)

Теми:

- ▲ Диференциални методи: FEM и FDTD;
- Квази-оптични методи: анализ на антени и на радио-канали (много кратко);
- ▲ Други методи: Генетични методи (кратко)

Отново: на какви техники се базира

съвременния електромагнитен анализ?

Електромагнитен анализ

<u>Пример:</u> ADS Momentum 21/2D-симулатор

Зависимост между максималните физическите размери на структурата и честотната област на симулации

Диференциалните методи в електродинамиката

По принцип, диференциалните методи в ЕД се формулират като *гранични задачи за полетата.* Като такива, решението на даден проблем за излъчване (*radiation*) или отражежие (*scattering*) изисква генериране на *числен механизъм* за свързване (*coupling*) на решенията за отделни, близко-разположени области дадена ЕД структура и нейното околно пространство ⇒ *крайни методи*.

Диференциални крайни методи

Крайните методи могат да се класифицират като *различни техники* (числени), които дават приближени решения (за полетата *E* и *H*) на *дискретизирани модели* на *реални непрекъснати структури* при определени гранични условия. Следователно, те предлагат начини за числено решаване на *специфични диференциални уравнения* в едно или повече измерения (вкл. времето).

$$D(r, t) \cdot f(r, t) = g(r, t) \quad a \quad r \in V_0$$

където:

 V_0 - *М*-мерен краен обем (*x*, *y*, *z*, *t*), ограден от повърхност S_0 ;

 $D(\mathbf{r}, t)$ - диференциален оператор (напр. от уравненията на Maxwell);

 $f(\mathbf{r}, t)$ - неизвестната векторна функция (полетата);

 $g(\mathbf{r}, t)$ - известен вектор (*driving vector*) (възбуждането);

 $f_0(\mathbf{r}, t)|_{S0}$ - известни гранични условия за f (полетата) върху S_0^{06}

Различни методи с крайни елементи

<u>FDM</u>:

Метод на крайните разлики (по една пространствена координата)

FDTD:

Метод на крайните разлики (включително и във времевата област)

<u>FEM</u>:

Метод на крайните елементи (по всички пространствени координати) (FDM - частен случай на FEM)

Обща изчислителна процедура на FEM:

FEM методът е <u>най-старият числен метод</u>. Приложението му в ЕД при 3D-симулаторите включва преди всичко дискретизация на обема на структурата на множество малки елементи с определени размери и форма (*finite elements*). Идеята е EM поле в структурата да се представи като сума от приносите на всеки отделен елемент чрез въвеждане на система от локални базови функции.

Математическа процедура:

√ Представяне на полето като сума по базовите функции:

√ Заместване в основното уравнение:

 $\sqrt{$ Уравнение за C_n чрез дискретизиране на възбуждането с тестващи функции

$$D(r).f(r) = \sum C_n \{D(r).U_n(r)\} = g(r)$$

$$W_k(r), D.f(r) \ge \sum C_n \langle W_k(r), D(r).U_n(r) \rangle$$

$$= \langle W_k(r), g(r) \rangle, \quad k = 1, 2, ..., N-1, N$$

 $f(r) = \sum C_n U_n(r)$ 3a $r \in V_0$

n = 1, 2, ..., *N*-1, *N*

Тук са приети следните означения:

 $U_n(r)$ - мрежа от векторни базови функции; $W_k(r)$ - мрежа от тестващи функции (ако $U_n(r) = W_k(r)$ - процедура на Galerkin), C_n - неизвестни коефициенти, решения на матричното уравн⁶⁹ние

• моделът на структурата, която ще се изследва, се разделя на хиляди малки области (тетраедри) и за всички възлови и средни точки от тях се дефинират базови функции $U_n(r)$ – общо 2 х 10 = 20 функции/тетраедър; n = 1, 2, ..., N-1, N

111

• вълновото уравнение се интегрира по обема:

$$\nabla \left[\boldsymbol{U}_{\boldsymbol{n}}(\boldsymbol{r}) \cdot \boldsymbol{\nabla} \times \{ \boldsymbol{\nabla} \times \mathbf{E} \} - \mathbf{k}_0^2 \boldsymbol{\varepsilon}_r \, \boldsymbol{\mu}_r \, \boldsymbol{U}_{\boldsymbol{n}}(\boldsymbol{r}) \cdot \mathbf{E} \right] dV = 0$$

 ◆ въвеждат се тестващи функции (≡ базовите), с които се дискретизира възбуждането на структурата/граничните условия:

$$\int_{\mathbf{V}} \left[(\nabla \times \boldsymbol{U}_{n}) \bullet \nabla \times \mathbf{E} - \mathbf{k}_{0}^{2} \boldsymbol{\varepsilon}_{r} \, \boldsymbol{\mu}_{r} \, \boldsymbol{U}_{n}(\boldsymbol{r}) \cdot \mathbf{E} \right] dV = \int_{\mathbf{S}} \left(\boldsymbol{boundary term} \right) \, dS$$

Практически пример: Приложение на процедурата при HFSS

• Директно от уравненията на Maxwell и материалните уравнения:

$$\nabla \bullet \mathbf{D} = \rho$$
 $\mathbf{D} = \varepsilon_r \varepsilon_0 \mathbf{E};$ $\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t$ $\mathbf{B} = \mu_r \mu_0 \mathbf{H};$ $\nabla \bullet \mathbf{B} = 0$ избира се $\rho, \mathbf{J} = 0; \mathbf{E}, \mathbf{H} \sim +j\omega t$

където са въведени комплексните относителни диелектрична и магнитна проницаемости на средата:

$$\varepsilon_r = \varepsilon'_r + j\varepsilon''_r = \varepsilon'_r (1 + \sigma/(j\omega\varepsilon_r') = \varepsilon'_r (1 + \operatorname{tg}\delta_{\varepsilon}),$$

$$\mu_r = \mu'_r + j\mu''_r = \mu'_r (1 + \sigma/(j\omega\mu_r') = \mu'_r (1 + \operatorname{tg}\delta_{\mu})$$

се получава вълновото уравнение за полетата:

$$\nabla \times \{\nabla \times \mathbf{E}\} - \mathbf{k}_0^2 \varepsilon_r \mu_r \mathbf{E} = 0$$

където $k_0^2 = \omega^2 \varepsilon_0 \mu_0 = \omega^2 / c^2$ - вълновото число:

110

Как се дефинират базовите и тестващите функции?

Във възловата точка (*vertex*) се съхранява стойността на тангенциалната съставяща на полето относно даден ръб на елемента

В средната точка се съхранява **перпендикулярната съставяща** на полето относно даден ръб на елемента (тангенциална на площта)

Пълното векторно поле във вътрешността на даден тетраедър се интерполира от възловите стойности на полетата, определени на съответните точки от тетраедъра

◆ <u>важна стъпка</u>: пълното векторно поле във всеки тетраедър се представя като векторна сума по базовите функции с неизвестни коефициенти x_m

Пример: 2D клетка (subdomain)

Полето вътре в триъгълника е суперпозиция от трите ръбни компоненти

113

 \bullet след заместване се получават система от уравнения (*N x N*) за неизвестните коефициенти:

$$\sum_{m=1}^{N} \mathcal{X}_{m} \left(\int_{\mathbf{V}} \left[(\nabla \times U_{n}) \cdot \nabla \times U_{m} - k_{0}^{2} \varepsilon_{r} \mu_{r} U_{n} U_{m} \right] dV \right) = \mathbf{f}$$

$$= \int_{S} (boundary term) dS$$

Всъщност, това е едно матрично уравнение от вида

където:

À известна N x N матрица: комбинация от базовите функции;

 $\hat{\mathbf{A}}\hat{\mathbf{x}} = \hat{\mathbf{b}}$

- **х** вектор-стълб на неизвестните коефициенти;
- **b** известен вектор-стълб на възбуждането/граничните условия

115

Свойства на матрицата, получена чрез FEM метода:

 \bullet от много висок ранг: обикновено *N* е повече от 10⁴

✤ много рядка, с голям брой нулеви елементи: само базовите функции, дефинирани в даден тетраедър, дават ненулеви записи

✤ компактна: прилага се интилигентна обработка и подреждане на ненулевите елементи, при което те се групират около главния диагонал

Решаване на матричното уравнение:

• Численото решаване на матричното уравнение става чрез ефективни декомпозиционни техники. В HFSS-7 се използва итеративен *Multifrontal Matrix Solver*. Декомпозирането на огромната матрица на множество подматрици от по-нисък ранг позволява използване на ефективна *паралелна изчислителна техника*.

• Правилното дискретизиране на обема на тетраедри също има значение за скоростта и точността на изчисленията (при подходящо съотношение на размерите на тетраедрите се генерират добре дефинирани от матеметическа гледна точка матрици).

• Ако възбуждането на структурата се промени, се изменя само дясната част на матричното уравнение (възбуждането на входовете, граничните условия, източниците, падащите вълни). Следователно, в такива случаи декомпозирането на матрицата се извършва само един път.

По-важните приближения при FEM метода:

• <u>При дискретизацията</u>: Тетраедрите, на които се разделя структурата, имат много добри "запълващи" свойства (добре покриват обема). Независимо от това, част от краищата на структурата могат да бъдат загрубени.

- <u>При възбуждането</u>: Възбуждането на входовете (дясната страна на уравнението) се решава първо в 2D опция на възбуждащите полета, а след това – в 3D опция. Това е източник на неточности.
- <u>Ограничения при моделите на "свободното пространство":</u> откритите структури (излъчващи до безкрайност) са недопустими. Структурата са загражда в кутия (*box*) с идеални абсорбиращи стени за падащата вълна, които обаче, "пропускат" излъчената от дискретизирания обем вълна (ефект на "абсолютно черно тяло").
- <u>Математически ограничения при изчисленията</u>, свързани с броя на значещите цифри.

Примери за 2D и 3D дискретизация

Пример: дискретизиране на сложен диелектричен обект Пример: дискретизиране на сложен диелектричен обект Два основни типа гранични условия: • интегрални (нелокални) • локални При дискретизирани електродинамични структури е необходимо дискретният елемент да се отдели от останалата "интегрална" област. Това става с въвеждане на фиктивна

условия.

дискретизирана област

окръжаваща област

125

Две числени техники за определяне на граничните условия:

• метод на интегралните уравнения или др. нелокални методи:

Окръжаващата област се представя чрез еквивалентните електрически и магнитни токове върху повърхността S_{BC} (формализъм на Green-интегралите) и описва всички възможни електромагнитни взаимодействия, произтичащи от уравненията

на Maxweel **⇒ прецизен, но силно нелокален подход!**

• метод на абсорбиращите гранични условия (АВС):

Окръжаващата област е ораничена от идеално абсорбираща падащата вълна повърхност S_{ABC} , но "пропуска" излъчената от дискретизирания обем вълна (ефект на "абсолютно черното

тяло") => ограничен , но съществено локален подход!

Приет в много от съвременните 3D-симулатори и позволява решаването на много практически електродинамични проблеми.

Два основни метода за съгласуване на дисктеризирания обем

затворена повърхност *S*_{*ABC*}, ограждаща дискретизираната област от окръжаващата, върху която се прилагат гранични

S_{AB}

падаща вълна Еі

отразена вълна Er

126

• **PML** (Perfectly-Matched Layers) – дискретизираното излъчващо тяло е оградено от кутия с неотразяващи стени (не физически слоеве, а математически - просто за по-правилни изчисления)

• **ABC** (Absorbing Boundary Conditions) – към стените са наложени такива гранични условия, при които всички излъчени полета се поглъщат; пълно съгласуване без отражение.

РМL – (измислени) едно или многослойни магнито-диелектрични стени, граничещи с външния идеален метал, за които $\varepsilon_r = \mu_r \sim 1 - j$ и с дебелина $d \sim 0.15 \lambda_0$. Най-близките точки на симулираното тяло са на разстояние ~(1-2) λ_0 от РМL.

FDTD:

Метод на крайните разлики

във времевата област

АВС – стени с висок повърхнинен импеданс, които осигуряват еквивалентно пространство за излъчване R → ∞. Най-близките точки на симулираното тяло са на разстояние ~(1-2) λ_{0} от ABC. Формата на ABC стените зависи от формата на тялото.

Brunel University, UK.

Сравнение между FEM и FDTD методите

FEM e *frequency-domain* метод: изследва се честотният отклик на структурата на вълни (*jωt*) в установен (steady-state) режим

FDTD е **time-domain** метод: изледва се еволюцията на отклика на структурата във времето (time-marching процедура)

FDTD е най-директният метод за числено решаване на уравненията на Махwell. <u>Основната идея</u> е да се използва метода на крайните разлики (FDM) за представяне на диференциалните оператори (∇×) в тях в алгебрична форма. Чрез <u>Yee-алгоритъм</u> се изразяват едно чрез друго Е и Н полето в пространството чрез тяхната еволюция във времето (FDTD метод) и така диференциалните уравненията на Maxwell се преобразуват в чисто нелинейни алгебрични уравнения. Тази процедура не създава огромни матрици, както е при FEM и MoM и, следователно, FDTD методът не изисква толкова сериозни компютърни ресурси, особено при изследване на структури с размери ¹³³ 10λ

Изисквания (в относителни единици) за необходимите компютърни ресурси при различните електродинамични методи

Пространствена мрежа при FDTD метода

Както при другите числени методи (FEM, MoM), и при FDTD метода дадена обемна структура се дискретизира в пространството (найчесто на кубични клетки кубоиди). Разликата тук е, че допълнително се дискретизира и времевия интервал - така се изследва еволюцията на полетата във времето (time-domain response).

коаксиален кабел: напречно сечение

Следователно, най-важните достойнства на FDTD метода са свързани с възможността за изследване на *нелинейни ефекти* в структурите, както и с естествения начин за третиране на *импулсното поведение* на техния времеви и честотен отклик както за синусоидални, така и за несинусоидални сигнали.

Натрупването на time-domain данни във времето предлага естествен начин за *визуализация на ЕД поведение* на структурата във времето (анимация на полетата), а след Фурие преобразуване (FFT) - и по честота.

Математически основи на FDTD метода

Едномерен случай: разпространение на плоска вълна по оста Ох

Разглеждаме едномерното вълново уравнение ($u(x, t) \Rightarrow E$ или *H*):

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$
цения: $u(x,t) = F(x+ct) + G(x-t)$

с реп

Заместени в скаларното вълново уравнение се получава тъждество:

$$c^{2}F''(x+ct) + c^{2}G''(x-ct) = c^{2}[F''(x+ct) + G''(x-ct)]$$

 $F(x+ct), G(x-ct) \sim e^{j(\omega t \pm kx)}$ са известните решения за разпространяващи се вълни в права и обратна посоки: $+x \Rightarrow -x$ или - $x \Rightarrow +x$. 137

Ако се пренебрегнат малките квадратични членове $O[(\Delta x)^2]$ и $O[(\Delta t)^2]$ по x и t се получава израза:

$$u_{i}^{n+1} \cong (c\Delta t)^{2} \left[\frac{u_{i+1}^{n} - 2u_{i}^{n} + u_{i-1}^{n}}{(\Delta x)^{2}} \right] + 2u_{i}^{n} - u_{i}^{n-1}$$

При $\Delta x = c\Delta t$ (magic time-step): $u_{i}^{n+1} \cong u_{i+1}^{n} + u_{i-1}^{n} - u_{i}^{n-1}$

Горният израз означава следното: стойността на полето *u*^{*n*+1} в даден момент n+1 в околността на дадена точка *i*-1, *i*, *i*+1, може да се определи само от стойностите му в предишни моменти n и n-1за същата точка, определени по същата процедура и запазени в компютърната памет. Следователно, тук не се получават никакви системи от независими уравнения или матрични уравнения (както при FEM, MoM). Това е опростената процедура за численото FDTD-решение на скаларното вълново уравнение! 139

Представяне (дискретизация) чрез крайни разлики по x и t:

Решението u(x, t) и производните му по x и t могат да се развият в пространствени и времеви редове на Taylor (крайни разлики):

• около пространствена точка x_i в интервал ($x_i - \Delta x$, $x_i + \Delta x$) за фиксирано време $t_n = \text{const}$ и

• около времева точка t_n в интервал $(t_n - \Delta t, t_n + \Delta t)$ за фиксирана пространствена точка $x_i = \text{const}$

Тогава едномерното вълново може да се дискретизира като:

$$\frac{u_i^{n+1} - 2u_i^n + u_i^{n-1}}{(\Delta t)^2} + O\left[(\Delta t)^2\right] = c^2 \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{(\Delta x)^2} + O\left[(\Delta x)^2\right]$$

Тук с *и*^{*n*} е означена стойността на полето в пространствена точка $x_i = i \Delta x$ и във времева точка $t_n = n \Delta t$

По разгледаната процедура могат да се решават числено широк клас едномерни задачи за разпространение на ЕМ вълни с дисперсия, загуби в средите и проводниците и пр., както в спектралната област (frequency-domain) така и във времевата (time-domain).

Числена стабилност на решението

Представената time-marching процедура може да се окаже нестабилна при неправилно избрани стъпки на дискретизация по х и t.

Условие за числена стабилност на алгоритъма:

$S \equiv c \Delta t / \Delta x \leq 1 \quad \Longrightarrow \quad \Delta t \leq \Delta x / c$

S се нарича *числен фактор на стабилността*. Обикновено при ЕД задачи пространствената стъпка на дискретизация се определя от съображения, свързани с дължината на вълната в структурата, т.е. $\Delta x \leq \lambda/4$ (типично при практическите задачи $\leq \lambda/10$ до $\leq \lambda/20$). Следователно, Δt се определя допълнително от условието за стабилност $S \le 1$, т.е. $\Delta t \le \Delta x / c$. 140

<u>Пример:</u> разпространение на Gaussian импулс в свободното пространство

• при S = 1 и S = 0.5решението е стабилно за всяка пространствена gridкоордината *i*.

• при S = 1.0005 > 1решението е нестабилно и численият шум започва да нараства експоненциално с увеличаване на времето (т.е. с времевата gridкоордината n)

Качествено описание на алгоритъма на Yee:

• Първата стъпка е разделянето (дискретизацията) на структурата на малки кубове с еднакви размери - клетки на Yee;

• Във всяка клетка се записват уравненията на Maxwell, съдържащи диференциалния оператор rot (или $\nabla \times$). Вътре в клетката с декартови координати *(i, j, k)* се записват полетата *u(i, j, k)*

 $(i, j, k) = (i\Delta x = j\Delta y = k\Delta z) \Rightarrow u(i, j, k) = (i\Delta x = j\Delta y = k\Delta z) = u^{n}_{ijk}$

• Може да се приеме, че вътре в клетката полетата са постоянни; Тогава от връзките между полетата (rot):

 H_y в т. (*i,j,k*) $\cong E_x$ и E_z в клетката (-const/ μ)

$$E_y$$
 в т.(*i,j,k*) \cong H_x и H_z в клетката (const/ ε)

Е-полето: в момента $t = n\Delta t$ (*n* - *цяло*) Н-полето: в момента $t = (n+1/2)\Delta t$

(*Дt* - дискретна стъпка във времето)

Приложение на FDTD метода в тримерното пространство: *алгоритъм на Yee*

През 1966 г. Капе Yee предлага най-директният числен 3Dметод в електродинамиката, базиращ се на FDM метода на крайните разлики, за представяне в алгебрична форма на зависещите от времето уравнения на Maxwell, включващи диференциалния оператор **rot** (или $\nabla \times$):

$\partial \mathbf{H} / \partial \mathbf{t} = -\mu^{-1} \nabla \times \mathbf{E}$ $\mathbf{u} \quad \partial \mathbf{E} / \partial \mathbf{t} = \varepsilon^{-1} \nabla \times \mathbf{H}$

След появата на бързите компютри с паралелна архитектура този метод (известен като тримерен **FDTD метод**) днес се развива изключително бързо и е в основата на много от медерните софтуерни електромагнитни 3D-симулатори. По-надолу е разгледан първо *качествено*, а после и *количествено* (с математически изрази) тримернната FDTD процедура (алгоритъм на Yee) за хомогенни 3D-среди. ¹⁴²

• Новото при записването на пространствените и времевите производни на полетата тук е използване на изрази чрез т. нар. *центрирани крайни разлики* (centered finite-difference, central difference). При този подход клетките са разделени допълнително на $\frac{1}{2}$ -части по Δx , Δy и Δz , както и по Δt - *leapfrog процедура*:

$$\frac{\partial u}{\partial x}(i\Delta x, j\Delta y, k\Delta z, n\Delta t) = \frac{u_{i+1/2, j,k}^n - u_{i-1/2, j,k}^n}{\Delta x} + O\left[(\Delta x)^2\right]$$
$$\frac{\partial u}{\partial t}(i\Delta x, j\Delta y, k\Delta z, n\Delta t) = \frac{u_{i,j,k}^{n+1/2} - u_{i,j,k}^{n+1/2}}{\Delta t} + O\left[(\Delta t)^2\right]$$

Така, местоположението за определяне на стойностите на *E* и *H* полетата се разделя пространствено на интервали $\frac{1}{2}\Delta x$, $\frac{1}{2}\Delta y$ и $\frac{1}{2}\Delta z$, но вътре в рамките на клетката (!), а също и във времето $\frac{1}{2}\Delta t$, но в рамките на един интервал (!). <u>В резултат</u>: постига се по-голяма точност при диференцирането и по-естествен и гъвкав начин за представяне на диференциалния оператор **rot** (или $\nabla \times$) от по⁴⁵етата

Следователно, съгласно описаната процедура *полетата в даден момент* могат експлицитно да се определят от стойностите им в предишния момент в дадената елементарна клетка с материални параметри ε и μ без използване на диференциални оператори.

Предложеният алгоритъм изчислява *полетата Е и Н заедно във времето и пространството*, а не поотделно чрез решаване на вълново уравнение за всяко и свързването им чрез гранични условия (FEM). Този подход е много по-смислен и ефективен, което го прави приложим за много повече реални електродинамични задачи По описаното свойство FDTD е аналогичен на МоМ, където обаче връзката между *E и H* става чрез граничните условия. При FDTD *няма необходимост от специално налагане на гранични условия!* Непрекъснатостта на тангенциалните *E и H* компоненти по границата между отделните клетки е осигурена автоматично от Yee-процедурата. Това е с сила и когато съседните клетки са от *различни* среди (където се прилагат гранични условия при другите методи). Изисква се, обаче, отсъствие на външни токове и заряди.

Формули за еволюцията на полетата, определена по FDTD метода:

$$\begin{split} E_{x_{i+,j,k}}^{n+1} &= \frac{1 - \frac{\sigma_{ijk}\delta i}{2\epsilon_{ijk}}}{1 + \frac{\sigma_{ijk}\delta i}{2\epsilon_{ijk}}} E_{x_{i+,j,k}}^{n} + \frac{2\frac{\delta t}{\epsilon_{ijk}}}{1 + \frac{\sigma_{ijk}\delta i}{2\epsilon_{ijk}}} \left(\frac{H_{z_{i+,j-k}}^{n+1/2} - H_{z_{i+,j-k}}^{n+1/2}}{\delta y_{j} + \delta y_{j-1}} - \frac{H_{y_{i+,j,k}}^{n+1/2} - H_{y_{i+,j,k}}^{n+1/2}}{\delta z_{k} + \delta z_{k-1}} \right) \\ E_{y_{i,j+k}}^{n+1} &= \frac{1 - \frac{\sigma_{ijk}\delta i}{2\epsilon_{ijk}}}{1 + \frac{\sigma_{ijk}\delta i}{2\epsilon_{ijk}}} E_{y_{i,j+k}}^{n} + \frac{2\frac{\delta t}{\epsilon_{ijk}}}{1 + \frac{\sigma_{ijk}\delta i}{2\epsilon_{ijk}}} \left(\frac{H_{x_{i+,j+k}}^{n+1/2} - H_{x_{i,j+k-}}^{n+1/2}}{\delta z_{k} + \delta z_{k-1}} - \frac{H_{z_{i+,j+k}}^{n+1/2} - H_{z_{i-,j+k}}^{n+1/2}}{\delta x_{i} + \delta x_{i-1}} \right) \\ E_{z_{i,j,k+}}^{n+1} &= \frac{1 - \frac{\sigma_{ijk}\delta i}{2\epsilon_{ijk}}}{1 + \frac{\sigma_{ijk}\delta i}{2\epsilon_{ijk}}} E_{z_{i,j,k+}}^{n} + \frac{2\frac{\delta t}{\epsilon_{ijk}}}{1 + \frac{\sigma_{ijk}\delta i}{2\epsilon_{ijk}}} \left(\frac{H_{y_{i+,j,k+}}^{n+1/2} - H_{y_{i-,j,k+}}^{n+1/2}}{\delta x_{i} + \delta x_{i-1}} - \frac{H_{x_{i,j+k+}}^{n+1/2} - H_{x_{i,j-k+}}^{n+1/2}}{\delta y_{j} + \delta y_{j-1}} \right) \\ H_{z_{i,j+k+}}^{n+1/2} &= H_{x_{i,j+k+}}^{n-1/2} + \frac{\delta t}{\mu_{ijk}}} \left(\frac{E_{y_{i,j+k+1}}^{n+1/2} - E_{y_{i,j+k}}^{n+1/2}}{\delta z_{k}} - \frac{E_{z_{i,j+k+}}^{n+1/2} - E_{z_{i,j,k+}}^{n+1/2}}{\delta y_{j}} \right) \\ H_{y_{i+,j,k+}}^{n+1/2} &= H_{y_{i+,j,k+}}^{n-1/2} + \frac{\delta t}{\mu_{ijk}}} \left(\frac{E_{z_{i+1,j,k+}}^{n+1/2} - E_{z_{i,j,k+}}^{n+1/2}}{\delta z_{k}} - \frac{E_{x_{i+1,j,k+}}^{n+1/2} - E_{x_{i+,j,k+}}^{n+1/2}}{\delta y_{j}} \right) \\ H_{y_{i+,j,k+}}^{n+1/2} &= H_{y_{i+,j,k+}}^{n-1/2} + \frac{\delta t}{\mu_{ijk}}} \left(\frac{E_{z_{i+1,j,k+}}^{n+1/2} - E_{z_{i,j,k+}}}^{n+1/2}}{\delta x_{i}} - \frac{E_{x_{i+,j,k+1}}^{n+1/2} - E_{x_{i+,j,k}}}^{n+1/2}}{\delta z_{k}} \right) \\ H_{z_{i+,j+k,k}}^{n+1/2} &= H_{z_{i+,j+k}}}^{n-1/2} + \frac{\delta t}{\mu_{ijk}}} \left(\frac{E_{x_{i+,j+k}}^{n+1/2} - E_{x_{i+,j,k+}}}^{n+1/2}}{\delta y_{j}} - \frac{E_{x_{i+,j+k,k}}^{n+1/2} - E_{x_{i+,j+k}}}^{n+1/2}}{\delta x_{i}}} \right) \\ H_{z_{i+,j+k,k}}^{n+1/2} &= H_{z_{i+,j+k}}}^{n-1/2} + \frac{\delta t}{\mu_{ijk}}} \left(\frac{E_{x_{i+,j+k}}^{n+1/2} - E_{x_{i+,j+k}}}^{n+1/2}}{\delta y_{j}} - \frac{E_{x_{i+,j+k}}^{n+1/2}}{\delta x_{i}}} \right) \\ H_{z_{i+,j+k,k}}^{n+1/2} &= H_{z_{i+,j+k}}^{n+1/2} + \frac{\delta t}{\mu_{ijk}}} \left(\frac{E_{x_{i+,j+k}}^{n+1/2} - E_{x_{i+,j+k}}}^{n+1/2}}$$

Частен случай за изменение на полетата при
$$\sigma = 0$$
:

$$H_{x(i,j+,k+)}^{n+1/2} = H_{x(i,j+,k+)}^{n-1/2} + \frac{\Delta t}{\mu_{ijk}\Delta z} \left(E_{y(i,j+,k+1)}^n - E_{y(i,j+,k)}^n \right) - \frac{\Delta t}{\mu_{ijk}\Delta y} \left(E_{z(i,j+1,k+)}^n - E_{z(i,j,k+)}^n \right)$$
+ подобни изрази за H_y и H_z

$$E_{x(i+,j,k)}^{n+1} = E_{x(i+,j,k)}^n + \frac{\Delta t}{\varepsilon_{ijk}\Delta y} \left(H_{z(i+,j-,k)}^{n+1/2} - H_{z(i+,j-,k)}^{n+1/2} \right) - \frac{\Delta t}{\varepsilon_{ijk}\Delta z} \left(H_{y(i+,j,k+)}^{n+1/2} - H_{y(i+,j,k-)}^{n+1/2} \right)$$
+ подобни изрази за E_y и $E_{z'}$ общо 6 алгебрични израза.

Абсорбиращи гранични условия (АВС) Идеята на абсорбиращите стени е Ω - 9Ω АВС могат да се представят х 100 10⁻¹ 10-2 10⁻³ type (2,2) 10 type (2.0) 10

Coel

Angle of Incidence

да погълнат излъчващото се поле от симулираната структура за да се имитира свободно пространство

(опишат) в симулатора както в аналитичен вид, така и да се изградят специални многослойни стени (PML), които реално да поглъщат сигналите (полетата) около структурата и така да имитират "свободно пространство" около нея. 155

Пример за идеално съгласувани поглъщащи стени (PML ABC's - Perfectly Matched Layer Absorbing Boundary Conditions) около излъчващ източник. Използват се както в FEM, така и в FDTD симулаторите.

Примери за приложение на FDTD метода:

Проникване на плоска вълна през RADOM (защитен слой) на ракета

Паразитни модове компютърен РСВ

8-слоен компютърен мултичип модул MCM 158

Разпределение на SAR в човешка глава на 1900 MHz, предизвикан от клетъчен телефон (30° наклон) с λ/4 антена

Резонанси в ринг и дисков резонатор с диаметър 5 μm AlGaAs

Полето в 6-GHz MW усилвател

ла

Е-поле на светъл солитон с дължина 100 fs в оптично влакно

161

Диференциалните и интегралните методи са подходящи за анализ на обекти с размери до няколко λ. За по-големи обекти най-добрите методи за тези, базирани на <u>геометричната и</u> физичната оптика и теорията на дифракцията.

Геометричната оптика е силно приближен метод, базиращ се на "лъчево трасиране" по законите на отражението и пречупването. Когато се прибавят и локални дифракционни ефекти от физичнатата оптика, точността се подобрява значително. Този метод е много подходящ за анализ на големи антени и на комуникационни радио-трасета, напр. при мобилни и безжични комуникации.

<u>HACT III:</u>

Други методи

Квази-оптични методи: геометрична и физична оптика, дифракция и др.

Приложения: големи антени

165

<u>HACT III:</u>

Други методи

Генетични методи (основни понятия)

<u>Генетичните методи</u> са нови, бързо развиващи се методи за оптимизация на по-сложни ЕД обекти с повтарящи се елементи и близки разстояния между тях – антенни решетки, филтри и др.

<u>Основната идея</u> на генетичните методи е следната: случайно да се подберат определени параметри на обектите, от които зависят свойствата им; да се определят параметрите им, от групата да се подберат структурите с най-добри параметри и процедурата отново да се повтори (генетичен подбор чрез случайни мутации!).

Основно понятие: <u>"хромозома" на параметрите</u> (подобно на биологичните ДНК-вериги). Два типа: бинарна хромозома (кодирани параметрите на структурата) и реална хромозома (реалните параметри на структурата). Данните за двете се съхраняват в информационна верига.

<u>Пример:</u> Проста Yagi-Uda антена с един вибратор и един отражател (вж. по-надолу) ¹⁶⁸

КРАЙ

Край на курса "Приложна ЕД'2005"