University of Sofia "St. Kliment Ohridsky" Faculty of Physics, Sofia, Bulgaria

4th International Workshop and Summer School on Plasma Physics, Kiten Bulgaria 5 – 10 July, 2010

Microwave Measurements of Electrical Fields in Different Media – Principles, Methods and Instrumentation

by Plamen I. Dankov

Outline

1. Electric-field measurements.

- E-field sensors dipoles and monopoles. E-field dosimetry. Wide-band sensors, sensors for circular-polarized fields; frequency-independent, miniature, fractal, reconfigurable sensors, radiating aperture, active sensors (rectenas), etc.
- ▲ Typical EMC/EMI measurements. Safety exposure standards.
- ▲ Popular example: determination of safety rates around urban GSM base station.

2. Antenna, antenna arrays and basic antenna measurements.

- Antenna as transducer, transformer, radiator and energy converter. Main antenna parameters radiation pattern, directivity, efficiency, polarization, etc.
- ▲ Main types of antennas. Antenna arrays. Steerable antennas.
- Far-field antenna measurements. Near-field antenna measurement. Near-field scanners. THz spectroscopy. Basic equipment for field/power/signal measurements.
- ▲ Electromagnetic simulators, applied to antennas and propagation media.

3. Characterization of dielectric materials and propagation media.

- Resonance, transmission-line and free-space methods for material characterization.
- ▲ Measurement specificity in the case of liquids, powder, absorbers, thin films, etc.
- ▲ Determination of the dielectric anisotropy of materials. "Two-resonator" method.
- ▲ Hairpin-resonator probe for characterization of electron density in plasmas.

1st Part: E-field measurements

1. Electric-field measurements.

- ★ E-field sensors dipoles and monopoles. E-field dosimetry.
- ★ Wide-band sensors, sensors for circular-polarized fields; frequency-independent, miniature, fractal, reconfigurable sensors, radiating aperture, active sensors (rectenas), etc.
- ★ Typical EMC/EMI measurements. Safety exposure standards.
- ▲ Popular example: determination of safety rates around urban GSM base station.

Main microwave measurements. E-field measurements. *s* main types of measurements in the microwave range Image: Strengt of the streng of the strengt of the strengt of the streng

EMC/EMI measurements

Materials' and media characterization

The E-field characterizations in the MW range are possible mainly by *power* and *spectrum* measurements. A necessity for actual information about the E fields *intensity*, *distribution* and *orientation* takes place in three main groups of measurements: 1) <u>EMC/EMI measurements</u>; 2) <u>antenna measurements</u> and 3) <u>characterization</u> <u>of different materials and media</u> (crystals, reinforced substrates, liquids, powders, absorbers, thin films, etc.)

Antenna measurements

cylindrical dielectric resonator (or for its suppression)

Miniature radiators based on composite metamaterials

Optimized A Fabricated Substrate

1.6

Frequency (GHz)

1.8

1.4

-25

-30

Plasma dipoles and reflector antennas

---- PE0

- Maromat

0-10-

20-

(GHz)

(Gri

Measurement scheme with the best equipment for this purpose

2nd Part: Antennas and antenna measurements

2. Antenna, antenna arrays and basic antenna measurements.

- ▲ Antenna as transducer, transformer, radiator and energy converter. Main antenna parameters radiation pattern, directivity, efficiency, polarization, etc.
- ▲ Main types of antennas. Antenna arrays. Steerable antennas.
- Far-field antenna measurements. Near-field antenna measurement. Near-field scanners. THz spectroscopy. Basic equipment for field/power/signal measurements.
- ▲ Electromagnetic simulators, applied to antennas and propagation media.

EM simulators

The modern EM 3D simulators generate own software media, where the users can relatively easy build and investigate new passive and active structure/devices. This software media includes three main components:

3rd Part: Measurement of materials and media

Characterization of dielectric materials and propagation media. 3.

- ⋆ Resonance, transmission-line and free-space methods for material characterization.
- 1 Measurement specificity in the case of liquids, powder, absorbers, thin films, etc.
- Determination of the dielectric anisotropy of materials. "Two-resonator" method. 1
- . Hairpin-resonator probe for characterization of electron density in plasmas.
- . Conclusions.

Three main types of material characterization

Resonance methods

Resonance parameters: resonance frequency *f* and O-factor 0

Dielectric parameters: dielectric constant $\boldsymbol{\varepsilon}_{.}$ and dielectric loss tangent $tan \delta_{c}$

Transmission-line (waveguide) methods

Waveguide parameters: propagation constant (phase delay) β and attenuation α **Dielectric parameters:** dielectric constant $\boldsymbol{\varepsilon}$ and dielectric

loss tangent tan S.

Free-space (quasi-optical) methods

Resonance parameters: free-space reflection and transmission coefficients

Dielectric parameters: dielectric constant $\boldsymbol{\varepsilon}_{r}$ and dielectric loss tangent $tan \delta_{\epsilon}$

Examples for waveguide methods Waveguide Multilaye sample Waveguide with multilayer sample Waveguides perturbed by samples

Open-ended coaxial probe

Materials under test

Parameters under test: dielectric constant (permittivity), dielectric loss tangent, magnetic constant (permeability), conductivity, thermal coefficients of these parameters

• Dielectrics (incl.	• Bulk materials	Crystalline solids
ceramics, plastics,	Single-layer	Polycrystalline a
reinforced sub-strates,	materials	amorphous materi
artificial materials, etc.)	• Multi-layer materials	 Reinforced
• Ferrites (incl. absorbers)	• Thin-films	substrates (fiber cl
Semiconductors	Nanocomposite	& appropriate filler
• Ferroelectrics	materials	 Liquid crystals,
• Plasmas	• etc.	• Liquids (incl. wat
Superconductors		petrol, milk, alcoho
Biological tissues	• Plates,	etc.,
• Metamaterials	• Disks,	• Absorbers,
 Nanomaterials 	• Prisms,	• Coatings,
• etc.	• Cylinders,	Powder material
	Spheres.	• etc

• etc.

nd ials, loths :s), ter, s,

Examples for measurement of dielectric anisotropy

Split Cylinders

Split Coaxial Cylinders

 Measurement procedure

 1) Resonator with sample:

 Measurement of the resonance parameters: f_{e1,2} and Q_{e1,2}

 2) Empty resonators

 Measurement of the resonance parameters : f_{01,2} and Q_{01,2}

 (Determination of the resonance parameters of the resonances D_{eq1,2} and the equivalent conductivity of the walls σ_{e1,2})

 • Determination of the pair of parameters: (ε'_{||}, tan δ_{e||}) and (ε'_⊥, tan δ_{e⊥});

 • Calculation of the dielectric anisotropy of the samples: ΔA_e, ΔA_{tanδe}

<u>Important idea</u>: simulation of part of the measurement resonators instead of the whole structure. The field symmetry of the excited modes (TE₀₁₁ or TM₀₁₀) allows us <u>to split the</u> <u>cvlinders</u> and to construct smaller 3D cavity models, which considerably decrease the computational time (50–100 times), improve accuracy and facilitate the mode identification

Substrate anisotropy of known substrates

<u>Substrates</u>	Measured ${m {\cal E}}'_{ }$ / tan ${m {\cal S}}_{{m {\cal E}} }$	Measured ε'_{\perp} / tan $\delta_{\varepsilon^{\perp}}$	IPC TM650 2.5.5.5 test method @ 10 GHz	Measured anisotropy △A _ε / △A _{tanδε} (in %)
RogersRO4003	3.605 /	3.408 /	3.38 ± 0.05	6.1 / 25.2
0.5225 mm	0.00367	0.00295	0.0027	
Arlon 25N	3.570 /	3.392 /	3 38 / 0 0027	58/216
0.520 mm	0.00415	0.00510	5.507 0.0027	5.0 / 21.0
Taconic RF-35	3.900 /	3.471 /	3 50 / 0 0033	115/263
0.5125 mm	0.00495	0.00391	5.50 / 0.0055	11.57 20.5
Neltec NH9338	4.025 /	3.273 /	3.38 ± 0.1	20 6 / 52 1
0.520 mm	0.00460	0.00277	0.0025	20.07 32.1
ISOLA IS680	3.703 /	3.327 /	2 29 / 0 0020	122/453
0.52 mm	0.00465	0.00300	5.58 / 0.0050	12.3 / 45.5

Source: Vesselin N. Peshlov, Plamen I. Dankov, Boyan Hadjistamov, "Models of Multilayer Antenna Radomes with Anisotropic Materials", 1st European Conference on Antennas and Propagation EuCAP'2006, France, Nice, November 2006, No. 349840PD

Example for measurement of plasma electron density by hairpin resonator probe

Electric field distribution in the quarter-wavelength resonator

Comparison with other measurement techniques

⇐ Fig. Comparison of the hairpin resonance probe with the Langmuir probe in Helium (a) and Argon plasmas with hydrogen admixture (b)

Electric-field and magnetic-field distribution of the first-order resonance $\text{TEM}_{001}(a)$ and second-order resonance $\text{TEM}_{002}(b)$ in the hairpin probe; obtained by HFSS-8 in eigen-mode option

