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DIFFUSION-CONTROLLED INDUCTIVE DISCHARGES
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Abstract, A self-consistent model of diffusion-controlled inductive discharges in an argon gas
is presented. The structure of the discharge, composed out of plasma- and wave- characteristics,
and its modifications with varying gas pressure and applied power are discussed.

1 Introduction

The inductive discharges are well-known with their nu-
merous applications to spectra-chemical analysis and
crystal growth, started many years ago with discharges
at high gas pressure as well as to surface processing,
plasma chemistry, light sources and ion sources devel-
oped recently with low-pressure discharges.

Plasma production in a straight cylindrical tube po-
sitioned inside a coil (solenoid) is the classical form of
inductive discharges. The discharge operation is in a H-
mode, i.e. as an inductive discharge, when the applied
power is high enough. Than the discharge maintenance
is in the azimuthal electric field induced by an axial mag-
netic field, produced by the current in the coil.

The wide use of the inductive discharges stimu-
lates the extended research on their modelling (see, e.g.
[1-4]). However, the fluid-plasma models of diffusion-
controlled discharges in the literature are still in the limits
of the Schottky approximation [5 ], and in spite of the high
plasma density production in the inductive discharges the
nonlinear processes of step ionization and recombination
are ignored.

Based on recent understanding on self-consistent
modelling of surface-wave-sustained discharges [6,7],
which shows the importance of accounting for the non-
linear processes of step ionization and recombination,
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the study presents a fluid-plasma model of inductive dis-
charges sustained in an argon in the gas pressure range of
the diffusion regime. The self-consistent structure of the
discharge composed out of plasma- and wave- character-
istics and its modifications with varying gas pressure p
and applied power P are discussed.

2 Discharge model

Inductive discharges sustained in an argon in the gas-
pressure range of the diffusion-controlled regime are de-
scribed within the fluid-plasma theory. With a length L
of the coil and, respectively, of the discharge larger than
the radius R of the gas discharge tube, the edge effects
can be neglected. Thus, the model is one-dimensional,
with axial magnetic (H;) and azimuthal electric (E,)
fields completing the field configuration.

The gas-discharge part of the model consist of:

o the relation between power © absorbed on average
by an electron and plasma density n averaged over the
discharge cross section [7]
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Figure 1. Relation of 77 to © [in (a)] and T [in (b)] for different
values of p. By circles and stars, the positions on the curves
of the discharges discussed in Section 3 for P = const. and
varying p as well as for p = const. and varying P, are marked.

balance equations,
o the expression for the total power P sustaining the
discharge

P =nR*mOL #)
and
o the Bohm criterion
Vs pJi (N)
—s - F 3
Ds R Jo(u) @

applied at the boundary between the plasma and the wall
sheath, with a thickness of the sheath tending to zero. The
latter relation determinates the parameter u of the radial
inhomogeneity of the plasma density of the Bessel-type
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of radial profile obtained
n(r) = n{r = 0)Jo{ur/R). @

The electron temperature T is related to the power
© according to: '

U,
Te=—to/6 )

obtained from the electron-energy balance considered in
a nonlocal approach.

In (1)-(5), D4 is the ambipolar diffusion coeffi-
cient, p, is the recombination coefficient, ©; = LU,
0, 19 and p%, depending on p, are the slowly vary-
ing functions of T, [6,7] which enter the frequencies
of excitation v, = 10 exp(—U,/T.) and direct ioniza-
tion v; = v exp(—U;/T.) as well as the rate coefficient
psi = p% exp(—U;/Te) of step ionization; 7 describes
the saturation of the step ionization and U, and U; are,
respectively, the energies of excitation of the first excited
atom state and of ionization. The other notation is as fol-
lows: it = p/2J1(p), Jo and Jy are the Bessel functions
and v, is the ion sound velocity.

Figure 1 presents the relation of 7@ to © and T, re-
spectively, in (a) and (b), in a -range, typical for induc-
tive discharges. With the high plasma-density production
in these discharges, the discharge maintenance is on that
branch [6,7] of the (©-7)-relation which is determined by
strong impact of saturated step ionization and recombina- ..
tion: © increases with the 7i-increase because of increas-
ing recombination losses. (The Schottky approximation
v; = (u/R)%D 4 is for quite lower densities which do not
show evidence on the (©-7)-curves in Figure 1(a).) The
crossing of the (©-71)-curves for different p (Figire 1(a))
is due to the influence of the recombination. In spite of
the nonmonotonic behaviour of © for different p-values,
T. - being determined by ©/©; where ©; is propor-
tional to p - monotonically decreases with increasing p
(Figure 1(b)).

The electrodynamical part of the model is completed
by the wave field equation for radiaily-inhomogeneous
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Figure 2. Radial profiles of the plasma density for different

p-values and P = 500 W.
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Figure 3, Radial profiles of the H [in (a)] and E,; [in (b)] ﬁeld

amplitudes for different p-values and P = 500 W.
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Figure 4. Radial profiles of the absorbed power @ and current
density j,, for different p-values and P = 500 W.
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plasmas
CH(r)  1dH,(r) 1 de(r) dH,(r)
dr? r dr g(r) dr  dr

+—e(r)Hx(r) =0 (6)
and the relation of £, to H,

i dH,

wege dr’

w = (7)
both steaming from the Maxwell equations. Here w is the
rf-frequency (the frequency of the transverse bulk wave
sustaining the discharge), £ and c are respectively, the
vacuum permittivity and the light speed in vacuum and
€ = 1 — [wi(r)/w(w + iv)] with w, and v being, re-
spectively, the plasma frequency and the electron-neutral
elastic collision frequency, is the plasma permittivity.

In the numerical procedure first the set (1)-(5) is
solved in iteration (with respect to T.) and then egs. (6)
and (7) are solved with (dH,/dr)|;=0 = 0 and a
H,(r = 0)-value which satisfies the condition Q;otq; =
(1/2) Jiy) 0r|E,|?dV = P where Q is the absorbed
power and o, is the real part of the plasma conductivity.
The wall thickness is taken into account in calculating the
radial field profiles.

3 Results on the discharge structure

The results for ©, T, and 7, presented in Figure 1, to-
gether with the radial profiles of plasma density n(r),
field intensities H,(r) and E,(r), absorbed power Q(r)
and current density j,(r) (Figures 2-7) complete the to-
tal self-consistent structure of the discharges. Argon dis-
charges sustained at frequency f = w/27 = 27 MHzina
quartz tube (with permittivity 3.78 and inner and external
radii R = 2.4 cm and R = 2.5 cm, respectively) are con-
sidered for constant gas temperature (T, = 600 K); the
length of the coil is L = 6 cm. The position R = 2.4 cmis
marked by a dash line in Figures 2-7. In the gas-pressure
range studied [p = (0.1 —5) Torr], the (v/w)-ratio varies
in the interval (v/w) ==0.56~13, and, thus, the discharge
maintenance is under the conditions of strong collisions.

Figures 2-4 show the modifications of the radial pro-

files of the plasma- and wave-characteristics with the gas’
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Figure 6. The same as in Figure 3 but for p = const. and
different P-values.

pressure increase. With respect to the plasma behaviour,
the value of p = 0.6 Torr appears to be the most effi-
cient: For a given applied power the discharge is with the
highest plasma density. Although 7 for p = 0.1 Torr is
not too much lower than the n-values for p > 1 Torr
(Figure 1(a)), the n{r)-profile for p = 0.1 Torr dif-
fers quite a lot from those for p > 0.6 Torr. This is
due to the low value of u obtained (1 = 2.089) for
p = 0.1 Torr compared to the p-values for p > 0.6 Torr
[ € (2.355 — 2.3995)]. In general, 4 increases with
p. With the gas-pressure increase, the field penetration
inside the plasma increases (Figure 3): At low pressure
(p = 0.1 Torr) the skin depth is 0.23 cm and the field is
concentrated close to the wall whereas at high pressure
(p = 5 Torr) the skin depth increases to 0.83 cm. With
the plasma density drop (Figure 2) and the increase of
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Figure 7. The same as in Figure 4 but for p = const. and
different P-values.

the E-field (Figure 3(b)) towards the discharge wall,
both @ = (1/2)0,|E,|? and j, = 0| E,| have maxima
(Figire 4). Due to the behaviour of the radial E,-profiles
(Figure 3(b)), these maxima shift - with p - towards the
discharge axis. Since @ o |E,|? and j, o |E,|, the
maxima of @ are closer to the wall. Although Q:otal
obtained after integration of Q(r) over the discharge
cross section stays constant (Qiotar = P), because of
the decrease of o, with the p-increase (o, o 7/v) the
lower-pressure discharges need higher E, for their main-
tenance.
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Figures 5-7 show changes of the radial profiles of the
discharge characteristics with increasing P for constant
p. The plasma density (Figures 1 and 5) and the field
intensity (Figure 6) increase with P; u stays almost con-
stant (u = 2.35). The power deposition (Figure 7(a)) and
the plasma current (Figure 7(b)) are concentrated close to
the wall with maxima which slightly shift - with the P-
decrease - towards the discharge axis. Again, the maxima
of j, are shifted towards the discharge axis with respect
to those of Q. The skin depth decreases from 0.52 cm to
0.35 ¢cm with the P-increase from 100 to 1000 W.

4 Conclusion

The study presents a self-consistent model of the
diffusion-controlled regime of inductive discharges in an
argon gas. The extension of the work will be towards
modelling of low-pressure inductive discharges in hy-
drogen regarding their use as sources of negative ions in
fusion devices.
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