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Abstract
A fluid-plasma model of diffusion-controlled cylindrical inductive
discharges in an argon gas is presented. The plasma-field structure of the
discharge obtained is completed by the interrelated behaviour of
concentrations of charged particles, electron temperature, power absorbed
on average by an electron, radial distribution of the components of the
high-frequency field, of the Joule heating and of the high-frequency current
density in the plasma. The self-consistency of the model and its validity
over a wide pressure range (p = (0.05–5) Torr) is reached by involving
detailed treatment of the electron energy balance, of the nonlinear processes
in the charged particle balance and of the momentum equations. By
accounting for the velocity dependence of the elastic electron–neutral
collision frequency, concepts from the kinetic plasma theory are introduced
in a fluid-plasma description of the discharge. The analysis of the results is
in terms of changing gas pressure, power and frequency of the maintenance
field. The changes of the parameters of the external coil due to the plasma
loading in the coil are also discussed.

1. Introduction

The wide use of inductive discharges in plasma processing
technology [1, 2] has motivated their active study over the
years [3–8]. Besides the discharge models based on the
kinetic plasma theory [9–14], aiming at determination of the
electron energy distribution function in the discharge and
specifying the electron heating at low gas pressures, the
theoretical description of the discharge has been developed
in two directions. The first one is the so-called transformer
model [1, 6, 8, 15–18] in which the information for the plasma
parameters comes out from the description of the electrical
characteristics of an equivalent transformer coupled circuit
completed by the external coil (as a primary circuit) and
the plasma (as a secondary one). Fluid plasma models
[6–8] of the discharge combining electrodynamics with gas-
discharge description form the second direction in discharge
modelling.

The diffusion-controlled regime of maintenance—in a
wide pressure range—of inductive discharges in an argon
gas is treated here. The study presents a self-consistent 1D
fluid-plasma model of the discharge developed by involving

recent achievements in modelling of surface-wave-sustained
discharges [19–26], inductive discharges [8, 27, 28] and high-
frequency discharges (e.g. [29]), in general.

Gas-discharge description and description of the elec-
tromagnetic field producing the discharge are coupled self-
consistently in the model presented here. The gas-discharge
part of the model is based on the concept [25] of the generalized
Schottky condition for discharges in atomic gases which states
that the total losses (by ambipolar diffusion and recombination)
are compensated by the total ionization (direct and step ion-
ization). The Schottky condition, still widely used in the fluid-
plasma models of the inductive discharges, does not provide
a self-consistent description because it equalizes only direct
ionization to the diffusion losses. The nonlinear processes
of step ionization and recombination—in the charged particle
balance—ensure, in general, the coupling of the plasma den-
sity ne to the electron temperature Te (or, equivalently, to the
power � absorbed on average by one electron) and thus, the
discharge self-consistency. Moreover, accounting for the step
ionization is a requisite for a proper description of the induc-
tive discharges because of the high-density plasma production
in these discharges.
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Diffusion-controlled regime of cylindrical inductive discharges

When the high-pressure range of the diffusion-controlled
regime is aimed to be also covered by the model, like
here, the recombination should be also taken into account.
This motivates the detailed description of the dissociative
recombination (DR) included in the model. Description of the
ion dynamics, with effective mobilities and effective ambipolar
diffusion coefficients introduced, extends the model towards
the low-pressure range of the diffusion-controlled discharges
and, partially, to the transition to the free-fall regime. For
proper covering of the wide pressure range considered, the
electron energy balance is also treated precisely. The electron
energy balance includes not only losses through thermal
conductivity and collisions (inelastic and elastic) but also
fluxes of thermal energy and pressure–force work carried out
by the directed motion as well as losses for maintaining the
ambipolar field.

Accounting for the velocity dependence of the electron–
neutral elastic collision frequency requires using electron
transport coefficients (mobility and diffusion coefficients for
momentum transfer) derived from the Boltzmann equation
for inhomogeneous plasmas in high-frequency and dc fields
(respectively, the field sustaining the discharge and the
ambipolar field). This not only involves in the fluid-
plasma description the integral representation of the plasma
conductivity [27, 28, 30, 31] (and, respectively, of the plasma
permittivity used in the electrodynamical part of the model)
but also modifies the electron energy balance.

The electrodynamical part of the model provides
a description of the electromagnetic field in radially-
inhomogeneous plasmas, with a radial profile of the plasma
density—a Bessel type of profile—as derived in the gas
discharge part of the model. Based on the radial field
distribution stemming from the electrodynamical part of the
model, the current density in the plasma and the Joule heating
are obtained and discussed with respect to the power deposition
in the discharge. Comparison with results obtained by taking
an averaged plasma density in the electrodynamical part of the
model shows the necessity of accounting for the radial plasma
density inhomogeneity. The changes of the parameters of the
external coil due to the plasma loading in the coil are also
commented on.

The discussions on the self-consistent discharge structure
concern the modifications of the discharge characteristics with
varying gas pressure, power and frequency of the maintenance
field.

2. Basis of the model

An inductive discharge with a cylindrical configuration
maintained in a diffusion controlled regime in an argon gas
is considered. The discharge is produced by using an external
coil of N turns and a length L positioned over the gas-discharge
tube (figure 1). The internal and external radii of the tube are,
respectively, R and R

′
. As it is known [1], the maintenance of

the inductive discharges is by an azimuthal electric field (Eϕ)

induced by the axial magnetic field (Hz) which is produced
by the high-frequency current in the coil. In fact, a transverse
high-frequency wave—of frequency ω, propagation constant
in a radial direction and field components Eϕ and Hz—which
penetrates into the plasma over the distance of the skin depth

Figure 1. A schematical representation of the discharge.

sustains the discharge. With a length of the coil L > R, the
edge effects are neglected and the description of the discharge
is within an 1D model.

Electrons, atomic (Ar+) and molecular (Ar+
2) ions as well

as ground-state and excited atoms are the species in the
discharge. The balance of the molecular ions is included
regarding the DR treated in the model. The metastable argon
states considered as a block are taken into account in the
description of both the step ionization and the DR. Similar
simplified atomic models including only metastable states or
the first four excited states, also as a block, have been often
employed [14, 20, 23, 32, 33] in description of main trends of
the discharge behaviour. The gas pressure p = N0κTg, where
N0 is the ground-state neutral density and κ is the Boltzmann
constant, as well as the gas temperature Tg and the total applied
power P are external parameters.

The gas-discharge part of the model is based on

(i) the continuity equations

div(nαuα) = δnα

δt
(1)

of the charged particles (where α = e, 1, 2 for electrons
and for the two types of ions Ar+ and Ar+

2-ions denoted,
respectively, by ‘1’ and ‘2’),

(ii) their momentum equations and
(iii) the electron-energy balance equation

− divJe − eneue · E +
δ(n〈Ke〉)

δt
= 0. (2)

In (1) and (2), nα and uα are, respectively, densities and
directed velocities, δnα/δt represents the particle production
and losses through collisions, Je is the electron-energy flux and
δ(n〈Ke〉)/δt describes the electron-energy losses in collisions.
The electric field E in (2) is the total electric field

E = ĒA + 1
2 {Ẽe−iωt + c.c.} (3)

including both the high-frequency field Ẽ sustaining the
discharge and the dc ambipolar field ĒA.

The electrodynamical part of the model is based on the
wave equation written in its form

�H +
1

ε(ω, r)
grad ε(ω, r) × curl H +

ω2ε(ω, r)
c2

H = 0 (4)

for the magnetic field of the wave in inhomogeneous plasma
with permittivity ε(ω, r); c is the light speed in vacuum.
The gas-discharge and electrodynamical descriptions are
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coupled not only through the plasma density and, in general,
through the conductivity which determines ε(ω, r) but also
through the total absorbed power Qtotal = P . In the gas-
discharge part of the model the latter is given by expression

Qtotal ≡ πR2Ln̄e� = P (5a)

where n̄e and � are, respectively, the averaged—over the
discharge cross section—plasma density and power absorbed
by an electron, whereas in the electrodynamical part of the
model the corresponding expression is

Qtotal ≡ 1

2

∫
(V )

(ReσẼ)|Eϕ|2dV = P ; (5b)

Re σẼ is the real part of the plasma conductivity.
The self-consistent plasma-field structure of the discharge

obtained from (1)–(5a) and (5b) is built by the interrelated
behaviour of concentrations of charged particles, electron
temperature, power � and radial distribution of the
components of the high-frequency field, as given in sections 3
and 4. The skin depth as well as the Joule heating and the
high-frequency current in the plasma (section 4) are the other
important characteristics of the discharge determined by the
above-listed quantities.

3. Gas-discharge part of the model

The final set of equations of the gas-discharge part of the model
includes the balance equations of the Ar+- and Ar+

2-ions (n1

and n2 are the corresponding concentrations) completed with
the balance of the excited atoms (with concentration Nj), the
condition for quasi-neutrality, the electron energy balance, the
Bohm criterion at the discharge walls and expression (5a) for
the total high-frequency power.

3.1. Charged particle balance

For solving the continuity equations (1) and completing the
particle balance, the directed velocity uα of the charged
particles and the processes for particle production and losses
through collisions, summarized in the terms (δnα/δt) in (1),
should be first specified.

3.1.1. Mobility and diffusion coefficients. Accounting for the
velocity dependence of the elastic electrons–neutral collision
frequency νe–n requires determination of the directed velocity
of the electrons ue from the anisotropic part f1(v) of the
electron velocity distribution function f (v) = f0(v) + (v/v) ·
f1(v) obtained from the Boltzmann equation [30, 31]. With
an electric field including both dc (ĒA) and ac (Ẽ) fields, as
given by (3), the solution for f1, obtained in the same form,
results in the following expression for the directed velocity of
the electrons:

ue = 4π

3

[
eĒA

me

∫ ∞

0

v3

νe–n

df0

dv
dv − 1

ne

∫ ∞

0

v4

νe–n
∇(nef0)dv

]

+
4π

6

[
eẼ
me

e−iωt

∫ ∞

0

v3

−iω + νe–n

df0

dv
dv + c.c.

]
. (6)

Here e and me are, respectively, the electron charge and mass;
f0(v) is the isotropic part of the distribution function taken as
a Maxwellian one.

Comparison of the stationary (time-averaged) part of (6)
with the fluid-model momentum equation for the electrons

neūe = −beneĒA − ∇(Dene) (7a)

defines the electron mobility be and the electron diffusion
coefficient:

be = −4π e

3me

∫ ∞

0

v3

νe–n

df0

dv
dv, (7b)

De = 4π

3

∫ ∞

0

v4

νe–n
f0dv. (7c)

The directed motion of the ions is only in the dc field ĒA.
Their velocities are obtained from the ordinary form of the
stationary momentum equation [31], however, with both elastic
and inelastic collisions taken into account:

uα = bαĒA − Dα∇nα

nα

, (8a)

where

bα = e

µα–nνα–n + mα(1/nα)(δnα/δt)
, (8b)

Dα = Tiα

µα–nνα−n + mα(1/nα)(δnα/δt)
(8c)

are the ion mobility and diffusion coefficients. Here α = 1, 2
for the two types of ions (Ar+ and Ar+

2, respectively), mα

and µα–n are, respectively, the masses of the ions and their
reduced masses and να–n are the ion–neutral elastic collision
frequencies.

The equality of the electron- and ion-fluxes, with
accounting that be � b1,2 and Te � Ti1,2 hold for the
mobilities and the temperatures of electrons and ions, results
in the final expression for the charged particle velocities in the
ambipolar field:

ūe = −DAe

∇ne

ne
, (9a)

u1,2 = −DA1,2
∇ne

ne
, (9b)

where

DA1,2 = Te

e
b1,2, (10a)

DAe = 1

ne
(DA1n1 + DA2n2) (10b)

are, respectively, the ambipolar diffusion coefficients of ions
and electrons. Using effective mobilities (8b) of the ions,
which account for the inelastic collisions, and defining,
respectively, effective ambipolar diffusion coefficients (10a)
extend the validity of the model towards lower pressures.
The electron velocity (9a) expressed through the ambipolar
diffusion coefficient (10b) is not influenced by the velocity
dependence of the elastic electron–neutral collision frequency.
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Table 1. Processes included in the particle balance. In the table, Te is in [eV] and Tg in [K]; g0 and gj are the corresponding statistical
weights and Ui and Uj are, respectively, the energies of ionization and excitation of the metastable state block.

No Process Rate coefficients References

1. Ar + e− → Ar+ + 2e− ki(m3/s) = 1.41 × 10−14T 0.69
e exp

(
−Ui

Te

)
[35]

2. Ar + e− → Ar∗ + e− k0j : polynomial representation [36]
3. Ar∗ + e− → Ar+ + 2e− kji : polynomial representation [37]
4. Ar∗ + e− → Ar + e− kj0(m3/s) = k0j (g0/gj ) exp(Uj/Te) [38]
5. Ar+ + 2Ar → Ar+

2 + Ar kAAA(m6/s) = 2.5 × 10−43(Tg/300)−3/2 [39]
6. Ar∗ + Ar∗ → Ar+

2 + e− kMAI(m3/s) = 6.3 × 10−16(Tg/300)−1/2 [39]
7. Ar+

2 + e− → Ar + Ar∗ kDR1(m3/s) = 7.35 × 10−14T −0.67
e h1 [34, 40]

8. Ar+
2 + e− → Ar + Ar kDR2(m3/s) = 7.35 × 10−14T −0.67

e h2 [34, 40]
9. Ar+

2 + e− → Ar+ + Ar + e− kDEI(m3/s) = 1.11 × 10−12 exp(−2.94/Te) [34, 39]

10. Ar+
2 + Ar → Ar+ + 2Ar kDAI(m3/s) = 6.06×10−12

Tg
exp

(
− 1.51×104

Tg

)
[34]

11. Ar+ + 2e− → Ar + e− kTR(m6/s) = 2.6 × 10−39T −4.5
e [38]

3.1.2. Particle production and losses through collisions.
The particle production and losses through collisions are
according to the processes listed in table 1. The argon atom
ionization is via direct and step ionization (reactions (1) and
(3) in table 1). The balance of the Ar+

2-ions [34] includes
their production by atom assisted association of atoms and
ions (AAA, reaction 5) and metastable–metastable associative
ionization (MAI, reaction 6) and losses by DR (reactions 7
and 8) and dissociation by electron and atom impact (reactions
9 and 10, respectively, with notation DEI and DAI). Three
body recombination of Ar+-ions (reaction 11) is also included
in the electron- and Ar+-ion balance. The rate coefficients
for the direct and step ionization as well as for excitation
are obtained by numerical integration of the cross sections
over a Maxwellian electron energy distribution. The data
for these cross sections as well as the rate coefficients for
the processes involved in the production and destruction
of the molecular ions are taken from [34–40] as given in
table 1. In the coefficients kDR1 and kDR2 the efficiency—
according to [34]—of the corresponding process is also
included.

3.1.3. Final set of equations for the particle balance. The
radial profile of the electron concentration

ne(r) = ne(r = 0)J0

(µr

R

)
(11)

is a Bessel type of profile, as expected for diffusion controlled
discharges provided the following assumptions are made
in the balance equations of the Ar+- and Ar+

2-ions (with
densities n1 and n2, respectively): (i) radially independent
ratios n1,2/ne and (ii) a linearization of the nonlinear terms
by replacements of the type of n2(r)ne(r) → n2(r = 0)ne(r).
The former is in agreement with the condition of
quasi-neutrality

ne = n1 + n2 (12)

and the latter has been widely used before [20–26] in models
of surface-wave-sustained discharges, after the detailed check
of its validity in [19]. The balance equations of the two types
of positive ions obtained from (1) after using (9a), (11) and

table 1 are as follows:(µ

R

)2
DA1n1(r =0)= [kiN0 + kjiNj (r = 0) + kDEIn2(r = 0)

− kTRn1(r = 0)ne(r = 0)]ne(r = 0)

+ kDAIN0n2(r = 0) − kAAAN2
0 n1(r = 0), (13)

(µ

R

)2
DA2n2(r = 0) = kAAAN2

0 n1(r = 0) + kMAIN
2
j (r = 0)

−(kDR1 + kDR2 + kDEI)n2(r = 0)ne(r = 0)

−kDAIN0n2(r = 0). (14)

The parameter µ of the radial plasma-density inhomogeneity
is obtained by applying the Bohm criterion for plasmas with
two types of positive ions [41]:

∑
k=1,2

e2nk(r = 0)

miku2
k(r = R) − Ti(r = R)

= e2ne(r = 0)

Te(r = R)
. (15)

The particle balance (equations (13) and (14) for the ions) is
completed by including the balance equation also of the excited
atoms:[

Dj

�2
j

+ kjine(r = 0) + kj0ne(r = 0)

]
Nj(r = 0)

+ kMAIN
2
j (r = 0)

= [k0jN0 + kDR1n2(r = 0)]ne(r = 0), (16)

where Dj and �j are the corresponding diffusion coefficient
and diffusion length.

3.2. Electron energy balance

The velocity dependence of the elastic electron–neutral
collision frequency influences the electron energy balance
through the electron energy flux Je (in the first term in
(2)) and the Joule heating of the electrons (included in
the second term in (2)), thus requiring involvement of the
kinetic plasma-model description as it has been proceeded in
obtaining (6).
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Comparison of the kinetic plasma-model representation
of Je:

Je = −bεneĒA − grad(Dεne) (17a)

with

bε = −2πe

3

∫ ∞

0

v5

νe–n

df0

dv
dv, (17b)

Dε = 2πme

3

∫ ∞

0

v6

νe–n
f0dv (17c)

being the mobility and the diffusion coefficient for energy
transfer, with its fluid-plasma model representation

Je = qe +
5

2
neTeūe, (18)

which includes not only thermal conductivity flux qe but also
energy of thermal electron motion and pressure–force work
carried by the directed velocity ūe (the latter given by (7a)
(7b) and (7c)), results in the final form

Je = −
(

5

2
− gu

)
neDegradTe +

(
5

2
− gu

)
neTeūe (19)

of the electron-energy flux in the fluid plasma-model
description. The quantity gu = −Teνe– n(∂ν−1

e–n/∂Te) is that
involved due to velocity dependence of νe–n.

The second term in the electron energy balance (2),

− eneue · E = 1

2
(ReσẼ)|Ẽ|2 − eneĒA · ūe (20)

is obtained using (3) and (6). The high-frequency plasma
conductivity

σẼ = −4π

3

e2ne

me

∫ ∞

0

v3

−iω + νe–n

df0

dv
dv (21)

included in the Joule heating—the first term in the right-hand
side of (20)—accounts for the velocity dependence of νe–n.
The second term therein, with ĒA

∼= −(Te/ene)(dne/dr) and
ūe as given by (9a), describes the electron-energy losses for
maintaining the ambipolar field.

The electron energy losses

δ(n〈Ke〉)
δt

= −neν∗U∗ − neνiUi − 3

2
neδνe–nTe (22)

in (2) are through inelastic collisions for excitation (total
excitation) and direct ionization, with frequencies ν∗ [36]
and νi , respectively, and threshold energies U∗ (the energy
for excitation of the first atom excited state) and Ui , as well
as through elastic collisions (with νe–n calculated according
to [42] and δ = 2me/ma being the part of the electron energy
lost in an elastic collision with atoms; ma is the atom mass).

The final form of the electron energy balance equation is(
5

2
− gu

) (µ

R

)2
DAeTe +

µ3

R4
TeDAe

1

J1(µ)

∫ R

0
r
J 2

1 (µr/R)

J0(µr/R)
dr

+ν∗U∗ + νiUi +
3

2
δνe–nTe = �. (23)

It is obtained from equation (2) and its terms specified by
(19), (20) and (22), after integration over the discharge cross
section (with a boundary condition for a zero thermal flux at

the discharge walls). The quantity � = Q̄/n̄e in the right-
hand side of (23) is the power absorbed on average by an
electron defined through the averaged plasma density n̄e and
the averaged—over the discharge cross section—Joule heating
Q̄ in the high frequency field (Q = (1/2)ReσẼ|Ẽ|2 as given
by the first term in the right-hand side of (20)). According
to (23), the absorbed power � compensates losses due to
collisions (the last three terms in the left-hand side of (23))
and fluxes of thermal energy and pressure–force work carried
by the directed velocity in the ambipolar dc field (the first term
in the left-hand side of (23) stemming from the second term in
expression (19)) as well as losses for maintaining the ambipolar
field (the second term in the left-hand side of (23) stemming
from the second term in the right-hand side of (20)); DAe is
the ambipolar diffusion coefficient of the electrons as given by
(10b). The power � is defined based on the power input to the
discharge according to (5a).

3.3. Results and discussions

The set of equations (12)–(16) and (23) provides description
of the gas-discharge part of the model giving the results for the
densities of the electrons (ne), of the atomic (n1) and molecular
(n2) ions and the population (Nj ) of the excited states as
well as for the power �, the electron temperature Te and the
parameter µ of the radial plasma-density inhomogeneity. The
gas-pressure range covered by the results is p = (0.05–5) Torr.
The power is varied up to P = 600 W. The values of the other
external parameters are R = 2.4 cm, R′ = 2.6 cm, Tg = 600 K
and L = 10 cm.

The gas temperature Tg is an external parameter of the
model, together with the gas pressure p. On the other hand,
Tg and p are related to each other via p = κTgN0. Since the
pressure dependence of the discharge behaviour is looked for,
as usually done, p is the external parameter varied and the same
value of Tg—reasonable, according to measurements (e.g.
[43])—is taken for the total, wide, pressure range considered.
In fact, the neutral atom density N0 is the parameter basically
present in the particle balance (13)–(16), not Tg and p. Thus,
for example, reduced gas temperature is equivalent to an
effective—proportional—increase in the gas pressure.

Figure 2 shows the changes of the plasma characteristics
(�, Te and electron- and ion-densities) of the discharge with
varying gas pressure. With the gas-pressure increase the power
� and the electron temperature decrease (figure 2(b)), due to
the decrease in the diffusion losses. Excluding the highest
pressures, inelastic collisions for atom excitation are the main
contributor to the electron energy losses and, respectively,
to the formation of � over the pressure range considered.
Starting with a value of more than 50% at p = 0.05 Torr,
the contribution of these losses increases close to 80% at
moderate pressures (p = (0.2–1) Torr). However, with the
further increase in the pressure the contribution of the losses
for excitation drops to about 40% (at p = 5 Torr). In the
range of the highest gas pressure the elastic collisions gain in
importance with a contribution which increases in the range
p = (1–5) Torr from 10% up to 50%. The collisions for direct
ionization provide a significant contribution, at the lowest
pressure values, e.g. about 30% for p = 0.05 Torr which is
about half of the contribution of the excitation losses. The
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Figure 2. Variations with the gas pressure p of the averaged
densities of electrons (ne), atomic (n1) and molecular (n2) ions and
of the population density Nj of the excited states in (a) and of � and
Te in (b); (c) radial profiles of the plasma density for different
pressure values. Constant applied power P = 100 W. The position
of the internal radius of the gas-discharge tube is marked in (c).

rest is provided by losses due to fluxes of thermal energy and
pressure–force work carried by the directed velocity in the
ambipolar field. Having the highest value of about 10% for
p = 0.05 Torr, the contribution of these losses decreases with
the gas-pressure increase. The contribution of the losses for
maintaining the ambipolar field stays at a value of about 7%
up to p = 2 Torr and then decreases with the p-increase.

With the constant value of the applied power, the �-
decrease leads to an increase in the plasma density ne

(figure 2(a)). The averaged concentrations of electrons and
atomic ions are almost the same. Due to the high plasma
density, the step ionization is the major contributor to the
production of electrons and atomic ions for p � 0.5 Torr. The
contribution of the direct ionization is higher than that of the
step ionization for p � 0.2 Torr. The losses of electrons and
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Figure 3. Normalized radial profiles of the electron concentration
obtained by solving the balance equations of the charged particles
and of the electron energy in their form (1) and (3) of differential
equations, together with the Poisson equation. Gas-pressure values:
p = 5 Torr (full curve) and 12 Torr (broken curve). The dotted curve
shows the Bessel-function approximation to the profile at
p = 5 Torr.

atomic ions are mainly through ambipolar diffusion confirming
that the pressure range chosen is governed by a diffusion-
controlled regime. At the highest pressures, close to p =
5 Torr, a transition to a recombination-controlled regime shows
up: the contribution of the DR becomes also important in
the electron balance reaching half of the contribution of the
diffusion. In this pressure range the AAA provides a significant
contribution to the losses of the atomic ions.

Even with recombination losses reaching—for p =
5 Torr—half of the ambipolar diffusion losses, the radial profile
of the plasma density is still a Bessel-type of profile, as figure 3
shows. The results in figure 3 are direct solutions of the
differential equations (1) and (2), combined in a set with the
Poisson equation. Obtaining a Bessel-type of profile when
the diffusion is the main mechanism of losses proves the
validity of the simplifications discussed in subsection 3.1.3,
checked also before [19], justifying the applicability of the
model discussed here. However, with the further increase in the
gas-pressure—above the gas-pressure range of the diffusion-
controlled discharges considered here—the growing role of
the recombination shows up in flattening of the radial profile
of the plasma density (figure 3) in the central part of the
discharge.

The variation with p of the concentration n2 of the
molecular ions is nonmonotonic (figure 2(a)). This is due to a
redistribution of the processes responsible for the Ar+

2-balance.
In the lower pressure range the losses of Ar+

2-ions, mainly due
to dissociation by electron impact (DEI), are compensated by
MAI. In the higher pressure range the losses are by both DEI
and DR and they are compensated by AAA. The transition
between production by MAI to production by AAA is at
about p = 0.5 Torr as it could be seen also in figure 2(a).
The contribution of dissociation by atom impact (DAI) is
negligible.

Up to p ∼= 2 Torr the density of the excited states
(figure 2(a)) is determined by population from the ground
state and depopulation by step ionization. However, for higher
pressures a contribution of the DR shows up in their production.
Although the atomic model employed here is very simplified,
the values of the population of the metastable states are of the
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Figure 4. Variations with the applied power P of the averaged
densities of electrons (ne), atomic (n1) and molecular (n2) ions in
(a) and of �, presented in terms of n̄e-variation, in (b). Constant
pressure values: p = 0.05 and 5 Torr in (a) and p = 0.05, 0.5 and
5 Torr in (b).

same order of magnitude compared with results from quite
more detailed collisional–radiative models (e.g. [44]). This
may be attributed to partial compensation of the contributions
of cascades from higher levels and losses to the resonance states
which, beyond all question being important, are mechanisms
acting in the opposite directions. In fact, the differences in the
results for the population of the metastable states obtained from
the different models show evidence mainly at low gas pressure,
a case when, as it has been mentioned before, the contribution
to the charged particle balance of the direct ionization becomes
bigger than that of the step ionization.

The obtained values (figure 2) of the plasma density are of
the order of those given in [8] for the same value (P = 100 W)
of the applied power. Since the plasma-density production
in the inductive discharges is high, the conditions of their
maintenance are far from validity of the Schottky condition,
thus requiring modelling, as it is done here, involving the
concept [19–26] of generalization of the Schottky condition
which calls for the importance of the nonlinear processes
of step ionization and recombination and, in the case of the
argon discharges considered here, of the nonlinear processes
accompanying the DR.

Figure 4 shows changes in the behaviour of the plasma
characteristics with variation of the applied power P . The
plasma density increases with the applied power (figure 3(a)).
Due to the slight dependence of � on n̄e (figure 4(b)),
respectively, on P , this increase is almost proportional to
the increase of P (figure 4(a)). The obtained results for
the plasma density for the conditions of the experiment in
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Figure 5. Normalized radial profile of the electron concentration for
p = 100 mTorr, P = 350 W and R = 1.9 cm: theoretical result from
the model presented here (full curve) and experimental data
from [45] (symbols).

[45] are of the same order of magnitude, with a difference
less than a factor of 2, compared with the data measured.
The comparison (figure 5) of the type of the radial profile
obtained experimentally and theoretically also shows very
good agreement. Estimations of the power � from data for
the plasma density from experiments in inductive discharges
with planar coils [46,47], made by involving the values of the
measured applied power and the size of the discharge vessel,
are also in agreement with the obtained theoretical values. The
constant value of � at moderate pressure (figure 4(b)) is due
to the saturation in the step ionization. The �-increase with
decreasing density when the gas pressure is low is due to step
ionization acting as a nonlinear process, i.e. without saturation.
The �-increase with the n̄-increase when the gas pressure is
high is due to increasing contribution of the recombination
losses.

The results show that, due to the high densities in the
inductive discharge, the step ionization is saturated, i.e. it
appears as an almost linear process not providing a strong
evidence of a (�−n)-dependence. However, going beyond the
Schottky condition and accounting for step ionization and also
for DR (and the processes involved by it) in the modelling of
argon discharges is a requisite because these are the processes
which, together with the diffusion losses, govern the discharge
behaviour. This shows up both in the particle balance and in
the values of � which are from 2 (for p = 0.05 Torr) up to
5 (for p = 5 Torr) times lower than those predicted by the
Schottky condition.

4. Electrodynamics and power deposition into the
discharge

The electrodynamical part of the model completes its gas
discharge part (section 3) with the radial distribution of
the components (Eϕ and Hz) of the high-frequency field
sustaining the discharge. Moreover, the plasma density and the
field distribution obtained, respectively, in the gas-discharge
description and in the electrodynamical description of the
discharge provide the results for the spatial distribution of
the high-frequency current density jϕ and of the power input
(i.e. the Joule heating) into the discharge. Regarding the
discussions on the maintenance of the inductive discharges,
the skin depth, also given here, is the other important quantity.
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The results for the changes of the parameters of the external
coil due to the plasma loading in the coil are also presented.

4.1. Set of equations

The space distribution of the field sustaining the discharge
stems from the wave equation (4) written—in cylindrical co-
ordinates—for the Hz-field component of the transverse high-
frequency wave producing the inductive discharge:

d2Hz(r)

dr2
+

1

r

dHz(r)

dr
− 1

ε(r)

dε(r)

dr

dHz(r)

dr

+
ω2

c2
ε(r)Hz(r) = 0. (24)

The radial plasma-density inhomogeneity of the diffusion-
controlled discharges is taken into account in (24). The high-
frequency electric field of the wave can be obtained from the
relation

Eϕ(r) = − i

ωε0ε(r)

dHz(r)

dr
(25)

between the two field components; ε0 is the vacuum
permittivity. According to expression (21) for the conductivity,
the plasma permittivity is

ε(r) = 1 − iω2
p(r)

ω

4π

3

∫ ∞

0

v3

−iω + νe–n

df0

dv
dv, (26)

where the plasma frequency ωp involves the electron density
(11) obtained in the gas-discharge part of the model.
The velocity-dependence of νe–n taken into account in the
plasma conductivity (21) crosses into the plasma permittivity,
influencing the electrodynamical description of the discharge.

Equation (24) is numerically solved in the plasma volume
with boundary conditions at the discharge axis:

dHz/dr|r=0 = 0, (27a)

Hz(r = 0) = H0, (27b)

where H0 is the value of the magnetic field which provides an
electric field satisfying the power conservation (5b).

The analytical solutions for the field distribution in the
glass tube (R � r � R′) are

Hz(R � r � R′) = C1J0

(ω

c

√
εgr

)
+ C2Y0

(ω

c

√
εgr

)
,

(28a)

Eϕ(R � r � R′) = i

cε0
√

εg

[
C1J1

(
ω

c

√
εgr

)

+C2Y1

(
ω

c

√
εgr

)]
, (28b)

where εg is the permittivity of the tube (εg = 3.8). The
constants C1 and C2 are determined by matching—at r = R—
these solutions to the solutions in the plasma region.

The skin depth of the transverse high-frequency wave
which produces the over-dense plasmas (ne > ncr where ncr

is the critical density) of the inductive discharges is calculated
from the radial distribution of the Eϕ-field according to

δs = 1

Eϕ(r = R)

∫ R

0
Eϕ(r)dr. (29)

4.2. Results and discussions

The results from the electrodynamical part of the model
presented here are for the radial distribution of the
electromagnetic field components, as well as for the wave
power deposition, i.e. for the Joule heating, and for the current
density in the discharge. Results for the plasma conductivity,
for the skin depth and for the total current in the discharge
are also discussed. The importance of accounting for the
plasma density inhomogeneity is also stressed. The analysis
of the results is in terms of varying gas pressure p, applied
power P and frequency ω. The results for different p- and
P -values complete the results for the plasma characteristics of
the discharge in figures 2 and 4 to a self-consistent model of
a 13.56 MHz discharge. In the gas pressure range considered
the discharge maintenance is under the conditions of strong
collisions (electron–neutral elastic collision frequency larger
than the wave frequency). Since changes of the frequency
of the field maintaining the discharge influence only the
electrodynamical part of the model, the results for different ω-
values combined with the results for the plasma characteristics
for given p and P (section 3) show the changes of the discharge
structure with varying frequency of the high-frequency field.

4.2.1. Varying gas pressure. The field distribution in figure 6
is in discharges sustained at f = ω/2π = 13.56 MHz,
P = 100 W and different gas pressures p (figure 2).
Figure 6(a) shows the radial decay into the plasma region
of the field components. The changes of the amplitude of
the field components with the increase in the gas-pressure are
nonmonotonic: with the p-increase from 0.05 till 2 Torr the
field amplitudes decrease and then, above 2 Torr, they slightly
increase. This is due to the nonmonotonic changes of the real
part of the plasma conductivity (figure 6(b)). For discharge
maintenance under the conditions of strong collisions, the
dependence of Re(σẼ) on the plasma density ne and on the
elastic electron–neutral collision frequency is of the type of
Re(σẼ) ∝ ne/νe–n (21). Both νe–n and ne (figure 2(a))
increase with p. However, ne increases strongly in the lower
pressure range, and slightly in the higher pressure range. This
determines the appearance of a maximum in the dependence of
Re(σẼ) on p (figure 6(b)). In a combination with the constant
value of the power applied for the discharge maintenance
P = (1/2)

∫
(V)

Re(σẼ)|Eϕ|2dV = const. (relation (5b)),
this behaviour of Re(σẼ) should result in the nonmonotonic
changes of the amplitude of the Eϕ-field shown in figure 6(a).
The relation of the Hz-field to the Eϕ-field (25) explains the
corresponding nonmonotonic changes of the amplitude of the
Hz-field. The nonmonotonic variation of the skin depth δs

with increasing gas pressure (figure 6(b)) correlates with the
behaviour of Re(σẼ). It is also due to the combined increase
in ne and νe–n with p. When the collisions are strong, the skin
length δs is

δs = (2ν̃e–n/ω̃)1/2(c/ωp), (30)

where ν̃e–n and ω̃ are, respectively, effective elastic electron–
neutral collision frequency and wave frequency [27, 28]. The
dependence δs ∝ (ν̃e–n/ne)

1/2 determines a decrease in δs in
the lower pressure range and its increase with p in the high-
pressure range.
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Figure 6. (a) Radial profiles of the amplitudes of the Eϕ-field and
Hz-field components for different values (p = 0.05, 0.2, 2 and
5 Torr) of the gas pressure. (b) Variation with the gas pressure of the
real part of the plasma conductivity (ReσẼ) and of the skin depth
calculated for inhomogeneous plasma (full curve) and homogeneous
plasma (broken curve) with plasma density equal to the
averaged—over the discharge cross section—density of the
inhomogeneous plasma. Frequency f = 13.56 MHz of the field
maintaining the discharge. Discharges with plasma characteristics
presented in figure 2: P = 100 W and the corresponding p-values.
The position of the internal and external radii of the gas-discharge
tube is marked in (a).

The Joule heating Q(r) = (1/2)(ReσẼ)|Eϕ(r)|2 is
localized close to the walls (figure 7(a)) as it should be expected
for inductive discharges. The same concerns the current
density jϕ = σẼEϕ (figure 7(b)). According to the dependence
of Q and jϕ on Eϕ , the Joule heating is stronger concentrated in
the outer region of the discharge than the current density. The
appearance of the maximum of both Q(Q(r) ∝ ne|Eϕ|2) and
jϕ in the outer region of the discharge is due to the simultaneous
decrease in the plasma density (figure 2(c)) and increase in the
electric field (figure 6(a)) over the radius.

With increasing gas pressure the maxima of Q and jϕ shift
towards the discharge axis (figures 7(a) and (b)). The irregular
distribution of the peak values of Q (and jϕ) for different gas
pressures may be related to the nonmonotonic variation with
p of the real part of the plasma conductivity (figure 6(b)).
The total current Ipl = L

∫ R

0 jϕdr decreases with increasing
p (figure 7(c)) as it could be also estimated from Ipl = Ljϕδs

(with jϕ and δs shown, respectively, in figures 7(b) and 6(b)).

4.2.2. Varying applied power. The results in figure 8
combined with those in figure 4 show the changes of the
structure of a 13.56 MHz discharge with the variation of
the power P applied for the discharge maintenance. The
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Figure 7. Radial distribution of the Joule heating Q in (a) and of the
current density jϕ in (b) for different p-values, as indicated in the
figures, of the discharges in figures 2 and 6 (P = 100 W,
f = 13.56 MHz). (c) Total current in the discharge.

amplitudes of the field components in the out-off centre region
monotonically increase with the P -increase (figure 8(a)). Due
to the density increase with P , the skin depth decreases
(figure 8(b)).

Figure 9 shows the expected increase in the peak value
of Q with increasing P (according to expressions (5a) and
(5b) for the power conservation, P = 2πL

∫ R

0 rQ(r)dr).
Respectively, the peak value of jϕ also increases with P .
Decreasing applied power causes a slight shift of the peak
values of Q and jϕ towards the discharge axis. The variation
of the total current in the plasma with P is given in figure 8(b).

4.2.3. Varying wave frequency. Figures 10 and 11 show
results of the discharge operation for different values of the
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Figure 8. (a) Radial profiles of the amplitudes of the Eϕ-field and
Hz-field components for different values (P = 100, 200 and 300 W)
of the applied power. (b) Variation with the applied power of the
skin depth δs and of the total current Ipl in the discharge. Frequency
f = 13.56 MHz of the field maintaining the discharge. Discharges
with plasma characteristics presented in figure 4 for the
corresponding values of the gas pressure.
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Figure 9. Radial distribution of the Joule heating for different
P -values of the discharges in figures 4 and 8 (for p = 0.5 Torr,
f = 13.56 MHz).

frequency f of the driving current in the coil. The skin depth
δs decreases with increasing f (figure 10(b)). The results
obtained from (29) are well approximated by the (ω̃−1/2)-
dependence of δs predicted by (30). Due to the strong
collisions, the real part of the plasma conductivity (21) does
not depend on ω. Therefore, for the constant value of the
applied power considered, and with the decrease of δs with
increasing f , the amplitude of the Eϕ-field should increase
with f , as figure 10(a) shows. The increase in Eϕ leads—
according to (25)—to the increase in the slope of the Hz-profile
(figure 10(a)). Since a magnetic field with lower frequency
induces an electric field with lower magnitude, the amplitude
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Figure 10. (a) Radial profiles of the amplitudes of the Eϕ-field and
Hz-field components for different values of the frequency (f = 1,
13.56 and 27 MHz) of the field maintaining the discharge. (b)
Variation with the frequency of the skin depth. Discharges with
plasma characteristics presented in figure 2 for P = 100 W and the
corresponding p-value (p = 1 Torr).

of the magnetic field should be higher at low frequencies (as
figure 10(a) shows) in order to keep the same value of the
power P .

The strong penetration of the electric field into the plasma
(figure 10) when the frequency is low leads to a shift of both
Q and jϕ (figure 11) towards the central part of the discharge.

4.2.4. Influence of plasma-density inhomogeneity. The
necessity of accounting for the inhomogeneity of the plasma
density in the electrodynamical part of models of diffusion-
controlled discharges is illustrated in figures 12 and 13. The
‘homogeneous’ case is calculated by using a radially constant
plasma density with a value equal to the averaged plasma
density obtained from the Bessel function radial profile (11).
In the inductively coupled discharges most of the power of
the electric field is deposited in the outer region of the plasma
column, i.e. close to the walls. Therefore, it can be expected
that replacing the plasma density drop close to the wall of the
Bessel-type of profile (figure 2(c)) by the quite higher value of
the averaged density may cause significant changes. This is
confirmed by the results for the radial profiles of the electric
(figure 12(a)) and magnetic (figure 12(b)) fields. With the
constant value of the applied power kept, the artificial increase
in the plasma density and, respectively, of the real part of the
plasma conductivity (21) when an averaged density is used
leads to the lower values of Eϕ shown in figure 12(a) in the
‘homogeneous’ case. This means that the magnetic field which
induces the electric field should be also smaller, in the case of
homogeneous plasmas, as figure 12(b) shows. Replacing the
plasma density drop in the outer region of the discharge with
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Figure 11. Radial distribution of the Joule heating Q in (a) and of
the current density jϕ in (b) for different f -values, as indicated in
the figures, of the discharges in figures 2 and 10 for p = 1 Torr,
P = 100 W.

the averaged density leads to a smaller skin depth (figure 6(b))
which is in accordance also with the (δs ∝ n−1/2)-dependence.

Figure 13, where results for the radial distribution of
Q and jϕ are compared for radially inhomogeneous and
homogeneous plasmas, confirms that the peaks of Q and jϕ

in inhomogeneous plasmas are due to the combined behaviour
of decreasing ne(r) and increasing Eϕ(r) towards the discharge
walls.

4.3. Changes of the parameters of the external coil

As it is known [1, 8, 15, 16], the loading of plasma in the
coil changes its parameters, causing a decrease (with �L) in
the inductance of the coil (N -turn coil) and an increase in its
resistance R0 (with �R), as indicated in figure 14 which shows
the transformer representation of the inductive discharge and
its equivalent circuit. The changes of the discharge impedance,
i.e. �L and �R, are the quantities needed for the estimation
of all other characteristics of the circuit (current, voltage and
phase difference between them). The results presented here
are on the variation of �L and �R with the applied power and
gas pressure. They are obtained by using the electrodynamical
part of the model.

With the value of the magnetic field at the outer radius
of the quartz tube known from the electrodynamical part of
the model, the current in the coil, which creates this magnetic
field, can be calculated according to I1 = Hz(R

′)L/N . The
total power P absorbed in the plasma is given. Therefore, the
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Figure 12. Radial profiles of the amplitudes of the Eϕ-(in (a)) and
Hz-(in (b)) field components calculated for inhomogeneous plasma
(full curves) and homogeneous plasma (broken curves). The latter is
with plasma density equal to the averaged—over the discharge cross
section—density of the inhomogeneous plasma. Frequency
f = 13.56 MHz of the field maintaining the discharge. Discharges
with plasma characteristics presented in figure 2: P = 100 W and
the corresponding values of p.
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Figure 13. Comparison of results for the radial distribution of the
Joule heating Q and of the current density jϕ in radially
inhomogeneous plasma (full curves) and homogeneous plasma
(broken curves). The latter is with plasma density equal to the
averaged—over the discharge cross section—density of the
inhomogeneous plasma. Discharge with plasma characteristics
presented in figures 2 and 12.

resistance which is incorporated in the circuit due to the plasma
loading in the coil is �R = 2P/I 2

1 . In order to calculate
�L, L1 which is connected to the total reactive power Qi in
the discharge (Qi = (1/2)ωL1I

2
1 ) should be found. Since the
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M

Figure 14. The transformer circuit representation of the inductive
discharge in (a) and its equivalent circuit in (b). The second circuit
in (a) presents the plasma column: L2 and Le are, respectively, the
inductances due to the circular flow of the azimuthal currents in the
plasma and to the inertia of the electrons; R2 is the active resistance
of the plasma. M is the mutual inductance. In (b), �L and �R are
the changes in the primary circuit impedance due to the plasma
loading.
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Figure 15. Variation with the gas pressure p of the changes �L and
�R of the inductance and the resistance of the primary circuit due to
the presence of plasma.

electrodynamical part of the model provides the results for the
magnetic and electric fields, the power flux in the discharge (the
Poynting vector) can be easily obtained. The reactive power
Qi which goes into the discharge is the imaginary part of the
Poynting vector integrated over the surrounding surface:

Qi = 1

2
Im

∫
S

(E × H ∗)dS = πR′LIm[Eϕ(R′)H ∗
z (R′)].

Thus, L1 is

L1 = 2π

ωI 2
1

R′LIm[Eϕ(R′)H ∗
z (R′)]

and the change �L = L0 − L1 of the inductance of the coil
due to the plasma loading in the coil can be obtained.

The inductance of the coil (with N = 8, R′ = 2.6 cm and
L = 10 cm) is L0 = 1.71 µH. Figure 15 shows the results
obtained for �L at P = 100 W and varying gas-pressure.
�L increases with the increase in the gas pressure in the
pressure range from 0.05 to 2 Torr and decreases at higher
pressures (from 3 to 5 Torr). This is due to the behaviour of
the skin depth (figure 6(b)) determined by the nonmonotonic
changes of Re(σẼ), as has already been commented. The
skin depth determines approximately the radius of the one-
turn coil, which is actually the plasma. Therefore, at higher
skin depth the inductance of the plasma is smaller (smaller
radius), resulting in smaller �L and vice versa.
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Figure 16. Variation with the absorbed power P of the changes �R
in (a) and �L (in (b)) of the resistance and the inductance of the
primary circuit due to the presence of plasma.

Figure 15 shows also the change of the resistance of the
primary circuit due to the variation of the gas-pressure. At low
pressures, the increase in the pressure causes a sharp increase in
the resistance. At higher pressures the dependence is smoother.

The changes �R of the resistance of the primary circuit
with the applied power are shown in figure 16(a). With the
P -increase (i.e. with the increase in the plasma density), �R

first increases, reaches a maximum and then decreases. Such
a behaviour is according to the formula

�R = ω2M2

R2
2 + ω2(L2 + Le)2

R2, (31)

which could be easily obtained from the transformer
presentation (figure 14(a)) of the discharge. With the increase
in P , the plasma density and, respectively, the plasma
conductivity increase, and thus, R2 decreases. Therefore, the
large values of R2(R2 > ω(L2 + Le)) correspond to the range
of small P -values, where �R increases with P (figure 16(a)),
the maximum is at R2 = ω(L2 +Le) and at high applied power
P , R2 is small (R2 < ω(L2 + Le)) showing that the plasma
is an inductive load. This behaviour of �R has been also
commented on before [8, 15, 48, 49].

The strong decrease in the skin depth (figure 10(b))
with the increase in the applied power (at low values of the
power) causes an increase in the mutual inductance M (higher
plasma current radius) and of the plasma inductance (L2) and,
subsequently, an increase in �L (figure 16(b)).
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5. Conclusions

A self-consistent fluid-plasma model of inductive discharges
in an argon gas is presented in the study. The self-
consistency of the model is based on the generalized Schottky
condition employed in the discharge description. The model
covers the total range of validity of the diffusion-controlled
regime including the transitions to a free-fall regime and
to a recombination regime. This is achieved owing to
detailed treatment of the electron energy balance, of the
nonlinear processes in the charged particle balance and of the
momentum equations. With the velocity dependence of the
elastic electron-neutral collision frequency taken into account,
concepts from the kinetic plasma model are introduced in
the fluid-plasma model description of the discharge. The
discharge structure is presented based on results for the
plasma density, the concentration of the atomic and molecular
ions and the population of the metastable states, for the
electron temperature and the power absorbed on average
by one electron, for the radial distribution of the electric
and magnetic fields of the transverse high-frequency wave
sustaining the discharge and of the Joule heating and the
current density into the plasma. Results for the skin depth
and the total plasma current are also given. The modification
of the discharge structure with varying gas pressure, applied
power and frequency of the field maintaining the discharge is
discussed. The changes of the parameters of the external coil
due to the presence of the plasma are also obtained.
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