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Abstract. The study is on nonlocal conductivity and stochastic heating in low-pressure 

inductive discharges with cylindrical coils. The rf current density derived by solving the 

Boltzmann equation in cylindrical coordinates, with accounting for both the high-frequency 

heating field and the dc field in the discharge, is coupled with the wave equation resulting into 

the spatial distribution – under the conditions of anomalous skin – of the electromagnetic field 

components, of the rf current density and the power deposition in the free-fall regime of 

maintenance of hydrogen discharges. 

1.  Introduction 

The inductive discharges [1] have always focused attention not only due to their use as plasma sources 

in the gas-discharge applications but also because they are rich with plenty of curious phenomena 

attractive for basic research. The power deposition in the discharge is such a phenomenon and its 

study combines gas-discharge physics with wave physics.  

The inductive discharges are produced by transverse high-frequency waves under the conditions of 

wave field penetration over the skin depth. When the discharge is at low gas pressures, in the free-fall 

regime, the skin is anomalous [2,3] due to the large mean free path of the electrons. The electrons gain 

momentum in the rf heating field close to the discharge walls and transfer it – through their thermal 

motion – into the plasma interior. The local relation Ej σ=  between current density )(j  and electric 

field )(E  is not valid anymore and the current density at a given position is determined by the electric 

field over the entire trajectory of the electron on the distance of its mean free path: 

'')','()',,',(),( dtdtttt ∫∫= rrErrrj σ  where )',,',( rrttσ  is the conductivity kernel. Respectively, the 

electron heating [1,4,5] in the field is stochastic (collisionless) and the description is within the kinetic 

plasma theory.  

The research on the rf power deposition in low-pressure inductive discharges [4-6] has revived the 

studies [7-9] on anomalous skin and nonlocal conductivity in the late 60’s and the early 70’s and 

involved them in the discharge modelling. However, the work up to now has covered only inductive 

discharges with planar coils, i.e. a planar configuration regarding to the wave penetration into the 

plasma. Anomalous skin in plasmas with a cylindrical configuration have been studied [9, 10], 

however, as a “pure” wave phenomenon only and, moreover, in approximations.  

This study provides derivation of the nonlocal current density in cylindrical inductive discharges 

sustained at low gas pressure (i.e. under the conditions of anomalous skin) as well as numerical results 
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on the spatial distribution of the field components of the wave sustaining the discharge, of the rf 

current density and of the wave power deposition into the discharge. The deep penetration of the wave 

field and of the current density into the plasma and the appearance of spatial regions of negative power 

deposition into the discharge are obtained as effects due to the importance of the thermal motion of the 

electrons.  

2.  Analytical derivation of the nonlocal current density in cylindrical inductive discharges 
Inductive discharges (of radius R) with cylindrical coils are considered (figure 1). The azimithal rf 

current in the coil forms the configuration (an azimuthal electric field ϕE
~

 and an axial magnetic field 

)
~

zH  of the transverse high-frequency wave (of frequency )ω  which sustains the discharge. Obtaining 

both the spatial distribution of the amplitude )(rEϕ  of the high-frequency field 
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and the power deposition Ej
~

⋅=Q  into the discharge requires to have the wave equation (1) coupled 

with an expression for the rf current density ϕj  in the plasma; in (1), c is the light speed in vacuum 

and 0µ  is the vacuum susceptibility.  

According to the maintenance of low pressure inductive discharges, (i) the wave is under the 

conditions of reflection from the plasma, i.e. it penetrates into the plasma over the skin depth, 

producing overdense plasmas cr( nne > , respectively, plωω <  where crn  is the critical density and 

plω  is the plasma frequency) and, (ii) there is a radial dc space charge field in the discharge which 

forms a potential well for the electrons. Therefore, in order to obtain ϕj  we should know the radial 

profiles of the electron concentration )(rne  and of the potential )(rΦ  of the dc field. In the 

presentation of the numerical results in the next section, the radial distribution of en  and Φ  is that 

(figure 2) obtained within the fluid-plasma model [11] of the free-fall regime of maintenance of 

hydrogen discharges.  

For deriving the general expression for the rf current density which covers the case of an 

anomalous skin and nonlocal conductivity, of interest for the description of the low pressure inductive 

discharges, we should start from the Boltzmann equation written in cylindrical ),,( zr ϕ  co-ordinates:  

 

 

 
Figure 1. Configuration of the discharge.  Figure 2. Radial profiles of the plasma density 

en  and of the potential Φ  of the radial dc field: 

a hydrogen discharge at mTorr7=p . 
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Here ),,( trf v  is the electron velocity distribution function, rv  and ϕv  are, respectively, the radial 

and azimuthal velocities of the electrons and em  is their mass; 0=∂∂ ϕ  and 0=∂∂ z  hold according 

to, respectively, azimuthal symmetry present and edge effects neglected. For obtaining the current 

density we need the solution of the Boltzmann equation for the oscillating part 

)iexp(),(),,(
~

11 trftrf ω−= vv  of the distribution function. A Maxwellian distribution is assumed for 

the isotropic part ),(0 vrf  of the distribution function and the Bhatnagar-Gross-Krook approximation 

)( 0fftf ne −−≈ −νδδ  is employed for the collision integral; ne−ν  is the electron-neutral elastic 

collision frequency.  

After specifying the sign of the radial component of the electron velocity by introducing 

)0(11 >=+ rvff  and ),0(11 <=− rvff  equation (2) reduces to: 
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with solutions expressing the conservation laws for the total energy const.]2)([ 22
=Φ−+= evvm r ϕε  

and for the angular momentum const.== ϕrvmM e  of the electrons, and describing the radial 

dependence of their distribution  
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The latter is obtained by using the condition for continuity of 1f  at :0=rv  

)()( 2,112,11 rrfrrf === −+ . This condition is applied at ,1rr =  the position of specular reflection of 

the electrons from the potential barrier near the discharge walls, and at ,2rr =  the position in the 

middle of electron path between two consecutive reflections. The quantities denoted by α  are 

integrals of the type of ∫
−

= −
1

2

'
)'(

),( 21

r

r r

ne dr
rv

i
rr

ων
α , in fact, related to the ratio of ω  to the frequency 

characterizing the bounce motion of the electrons in the potential well.  

The current density is 

   ∫ −+ +−=
)v(

3
11 v,d)()( ffverj ϕϕ        (5) 

where .dddvd3
zr vvv ϕ=  Polar co-ordinates φφ ϕ sin,cos ⊥⊥ == vvvvr  are introduced and the 

positions 1r  and 2r  are determined as roots of 0|)'(| =rvr  with  
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obtained from the conservation laws. Integration over zv  of the Maxwellian distribution 0f  and 

change of the integration order in equation (5) yield the final analytical form of the current density: 

  ∫∫ +=
R

r

r

rrErrGrrErrGrj 'd)'()',('d)'()',()( 2

0

1 ϕϕϕ       (7) 

where  
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In (7), 1G  and 2G  are the conductivity kernels and eT  is the electron temperature. The integral form 

of the current density accounts for the nonlocality: The current density at a given radial position is a 

function of the field along the entire trajectories of the electrons. The nonlocal conductivity is an effect 

of the thermal motion which transfers to a given r-position information about the rf field at all 

previous positions of the electron along its trajectory.  

Equations (1) and (7) coupled in a set result in the spatial distribution of the high-frequency electric 

field and the current density in the discharge. The boundary conditions for )(rEϕ  are 0)0( ==rEϕ  

and 0)( ϕϕ ERrE ==  where 0ϕE  is adjusted to match the target total power P. In the numerics, the 

finite difference method is applied. 

3.  Results and discussions 

Anomalous skin and nonlocality govern, respectively, the rf field penetration and the current-density 

formation under the conditions of the free-fall regime of maintenance of cylindrical inductive 

discharges. In fact, the analysis in the previous section completes the electrodynamical part of the 

model of such a discharge. In the presentation of the numerical results here, it is coupled with the 

fluid-plasma model description [11] of hydrogen discharges. The gas-discharge conditions are, as 

follows: gas pressure mTorr7=p , cm25.2=R  and power W/cm196=P  applied per an 1 cm 

length of the discharge. The plasma parameters [11] are: eV45.9=eT , 17 s101.1 −
− ×=neν  and )(rne  

and )(rΦ  as given in figure 2. The frequency πω 2/=f  of the applied rf power is varied. 

 

 

 

Figure 3. Radial distribution of the amplitude (a) and of the phase (b) of the rf electric field. 

Figure 3 presents the results for the radial profiles of the amplitude and the phase of the rf electric 

field sustaining the discharge. In order to stress that local approach is not applicable to the given gas-

discharge conditions, the field amplitude and phase obtained by using the expression for the local 

conductivity )))(/()(( 2 ωνσ imen neee −= −  are also shown. Nonmonotonic variations of the wave 
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amplitude and phase across the radius resulting from the nonlocal electrodynamics replace the 

monotonic variations predicted by the local approach. Two regions of different types of radial 

variation of the amplitude show evidence: close to an exponential decay of the amplitude near to the 

discharge walls and a hump in the plasma interior. A slight linear variation of the phase accompanies 

the changes of the field amplitude in these two regions. However, the phase jumps sharply at the 

position of the drop of the field amplitude between the two regions. The deep extension of the field 

towards the discharge axis is due to the transfer – by the thermal electron velocity – of a directed-

motion momentum gained in the skin layer: The electrons, reflected by the dc potential well back to 

the plasma interior, keep “memory” – through their momentum – about the rf field in the skin layer.  

 

Since the gas pressure is low and, respectively, the mean free path of the electrons is large, a big 

difference could appear between the phase of the local field and that of the electron momentum, thus, 

strongly affecting the field and the current density in the plasma interior. Field variation close to the 

walls similar to that predicted by the local approach does not contradict to such a concept because the 

electrons coming from the plasma interior transfer relatively small momentum to the skin layer, 

compared to that gained in the field there and, by that reason, they could not affect significantly the 

current and the field in the skin layer. Connected to the ϕE -field according to 

],d)((d)[i()( 0 rrrErrH z ϕωµ−=  the magnetic field (figure 4) is also with nonmonotonic radial 

changes and a jump of the phase. The spatial distribution of the amplitude and the phase obtained in 

cylindrical discharges is in the trends of that discussed [4] in discharges with planar configuration, 

confirming that the nonmonotonic changes of the amplitude of the field and the jump of its phase 

outline general behaviour within the nonlocal electrodynamics. The frequency dependence of the 

effects can be related to the presence of a “second wall” in the discharge which provides conditions for 

a resonance of the wave field with the bounce motion of the electrons across the total cross section of 

 

 

 

Figure 4. The same as in figure 3, but for the rf magnetic field. 

 

 

 

Figure 5. Radial distribution of the rf power deposition (a) and of the rf current density (b). 
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the discharge. However, in cylindrical discharges the scenario of this transit time resonance is quite 

more complicated compared to discharges with a planar configuration [5].  

The radial profile of the power deposition into the discharge (figure 5(a)) also shows effects 

specific for the nonlocal electrodynamics. The most drastic one is the negative power absorption 

obtained for the highest frequency ( f = 27 MHz) shown in the figure: There is a spatial region in the 

discharge where the electrons, instead of taking energy from the field, give back energy to the wave. 

This effect of a reverse Landau damping is also a display of the importance of the thermal motion of 

the electrons. The negative power absorption results from an accumulation – due to the time variation 

of the field during the electron walk from the skin layer to the plasma interior – of a phase difference 

larger then 2/π  between the momentum of the electron mainly gain in the skin layer, and the local 

field in the plasma interior. Figure 5(b) which shows the radial profiles of the current density 

amplitude confirms the discussions on the extension of the current channel into the plasma interior. 

The profile calculated by using the expression for the local conductivity, given for comparison, is 

concentrated near the walls.  

4.  Conclusions 
Nonlocal electrodynamics of cylindrical inductive discharges sustained at low-gas pressure is 

developed. The difficulties in treating discharges with cylindrical configuration are due to having the 

azimuthal velocity as a variable which enters the conservation laws of the electron motion. The current 

density of the electrons is derived and coupled with the wave-field equation resulting in the spatial 

distribution of the field components of the transverse high-frequency waves which sustains the 

discharge as well as for the current density and the power deposition in the discharge. In a way, the 

study presents the electrodynamical part of the models of the free-fall-regime maintenance of 

cylindrical inductive discharges.  

Deep extension of the wave field and of the current density into the plasma interior, jump of the 

phase of the field components as well as appearance of spatial regions of negative power deposition in 

the discharge outline the behaviour of the discharges sustained under conditions of low gas pressures 

and bring into evidence nonlocality associated with the thermal motion of the electrons.  
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