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Abstract
The use of magnetic fields is quite common in low-pressure, low-temperature, gas-discharge
devices for industrial applications. However, transport in such devices is still not very well
clarified, mainly due to the presence of walls playing a crucial role and to the variety of
configurations studied. The latter often obstruct the underlying basic physical phenomena and
make the different studies valid only for very specific configurations. This work presents a
numerical study of particle transport in low-pressure (0.3 Pa) plasmas across a localized
transverse magnetic field (magnetic barrier) by means of the 2D3V particle-in-cell with Monte
Carlo collisions method. The problem is treated as generally as possible while trying to reveal
the basic physics, using very simplified chemistry and considering a simple rectangular
configuration. The conditions chosen for the magnetic field are common to many
applications—magnetized electrons and almost unmagnetized ions. Two basic configurations
with different magnetic field directions are analyzed in detail: magnetic field perpendicular to
the simulation plane and along the simulation plane. An extensive parametric study is carried
out in order to obtain the main trends and scaling laws for particle transport with respect to
different parameters: plasma density, magnetic barrier size and magnetic field magnitude. The
total current of electrons crossing the barrier is found to scale linearly with the plasma density,
which extends the validity of the obtained results to a wide range of plasma density values.

(Some figures may appear in colour only in the online journal)

1. Introduction

The problem of electron transport across a transverse magnetic
field is rather old and has been studied for many years
with respect to nuclear fusion devices based on magnetic
confinement, probe diagnostics, particle beams, etc. In the
last few decades, low-temperature plasma sources (LTPS)
have found numerous applications and become an important
part of the whole industry. There are several low-pressure
plasma sources operating with magnetic fields (such as
magnetron discharges, electron cyclotron resonance (ECR)
plasma sources, Hall effect thrusters, end-hall sources and
negative ion sources) and for them the problem of magnetized
plasma transport is essential. While the magnetic field in these
plasma sources is usually much lower compared with fusion

devices and thus the ions are weakly magnetized, because
of the relatively low gas pressure (below a few Pa), the
electrons are still strongly magnetized and transport in the
direction perpendicular to the magnetic field lines may pose
problems similar to fusion plasmas. An important difference
between LTPS and fusion devices however is that in most LTPS
the vacuum chamber and geometry determine the discharge
operation. The walls cause the formation of wall sheets which
may interact with the magnetic field and produce additional
transport. This effect appears to be especially important in
devices where the magnetic field is used to reduce the electron
transport in a certain direction.

The purpose of this work is to study electron transport
across a localized magnetic field (also called magnetic
barrier, MB) in the presence of chamber walls by means
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of particle-in-cell (PIC) kinetic modeling. This work aims
to give a better understanding of the influence of the walls
on the electron transport in low-pressure LTPS and gives
the trends in the scaling of electron transport with respect
to different parameters such as the magnetic field strength,
electron density, MB width (MB length which is to be traversed
by the electrons) and the distance between the walls. These
results are part of the authors’ efforts [1–3] devoted to modeling
negative hydrogen ion sources used in the neutral beam
injection systems of fusion devices [4]. In these sources
a magnetic field (magnetic filter) is used [5–7] to reduce
the electron temperature and electron transport toward the
extraction grid in order to increase the negative ion production
and to allow their extraction.

Over the last two decades these sources have been
extensively studied both theoretically and numerically.
Although there are numerous works studying the problem
of MB (also called magnetic filter) and the negative ion
extraction system, none of them considers in detail the effect
of cross-field transport caused by the chamber walls. In [8]
the extraction physics is studied under realistic conditions
using the 2D3V particle-in-cell with Monte Carlo collisions
(PIC-MCC) method, but due to the high density only a
single aperture is considered and the side walls of the real
source are replaced by periodic boundary conditions. In [9]
again the 2D3V PIC method is used to describe a bounded
domain (including side walls); however, the magnetic field
is chosen to have components only in the simulation plane,
and thus the authors exclude any cross-field transport caused
by the combined effect of the wall sheath/presheath and the
magnetic field (E × B drift). Several works address the
problem using the fluid approach [2, 10, 11]. While careful
construction of fluid models could provide reasonable and
qualitatively accurate results, they face serious difficulties
related to boundary conditions and nonlocalities of low-
pressure discharges. Therefore, this work presents an extended
study of the MB problem and uses an explicit PIC-MCC
method for the modeling.

While negative ion sources are the main motivation for
this work, the results obtained are not limited to negative
ion sources and might be useful for a broad range of plasma
sources using magnetic fields. The problem is treated in a
rather general way by considering the MB in very simplified
geometry and plasma chemistry in order to exclude any
effects specific to certain complex geometry or chemistry.
Although geometry/chemistry effects may sometimes play a
significant role, we think that the basic physics should be
well understood first and should then be analyzed with respect
to any specific configuration and additional effects should be
added. Therefore, the geometry used here is a simple rectangle,
the MB has an idealized Gaussian shape and the discharge is
sustained by artificial charged particle injection and electron
Maxwellization in a limited region.

This paper has the following structure. In the next section
we recall some basic laws which are well known from the
classical textbooks on plasma physics but we add them here
explicitly to make the paper easier for reading. Next we briefly
present the numerical model based on the PIC-MCC method

and the conditions used in the simulations. In section 4 of
the paper we present and analyze four simple configurations
with different directions of magnetic field perpendicular to
the plasma flow and different boundary conditions at the side
walls—dielectric and grounded side walls. Here, we analyze
the MB performance for reducing the electron flow toward the
downstream region (to be defined precisely in section 4) where
we apply certain attracting (extraction) positive potential.
Section 5 includes several parametric studies of the plasma
and MB characteristics with respect to different parameters:
the plasma density, filter width and magnetic field strength.
In section 6 we present the results of the variation of plasma
parameters as a function of the transverse size of the domain
(here in the ‘y’ direction) and their convergence to the 1D
solution (where the side wall influence is neglected). Here
we will also briefly comment on the excitation of instabilities
leading to the so-called anomalous transport across the MB.

2. Basic laws

In the presence of a magnetic field the motion of a single
charged particle (between collisions with other particles or
walls) is described by the Newton equation:

dv

dt
= q

m
(E + v × B), (1)

where v is the particle velocity, q is the particle charge, m is the
particle mass, E is the electric field and B is the magnetic field
induction. Although precise (for single collisionless particle
trajectory), the Newton equation is not convenient for the
description of overall particle motion. For example, if the
particle is gyrating in the magnetic field it could happen that
on average it is not moving at all. Therefore, particle motion
in a magnetic field (for weakly varying electric and magnetic
fields) is usually considered as a sum of two components—
fast gyration of the particle in a cyclotron orbit xL(t), vL(t)

and slow drift (xgc(t), vgc(t)) of the guiding center obtained
after averaging out the cyclotron motion: x(t) = xgc(t)+xL(t),
v(t) = vgc(t)+vL(t). With respect to the MB problem, we are
mainly interested in the particle’s guiding center motion, i.e.
the particle drifts. In most of the plasma physics introductory
textbooks one can find a detailed explanation of the different
particle drifts (see for example [12, 13]). Here we will mention
just those appearing for the field and geometry configurations
considered in this work (assuming weakly varying fields):

vE×B = E × B

B2
E × B drift, (2)

v∇B = q

|q|
1

2
v⊥rL

B × ∇B

B2
∇B drift, (3)

where rL is the Larmor radius and v⊥ is the magnitude of
the velocity component perpendicular to the magnetic field.
Of course one should remember that single particle motion
has one more very important feature: collisions. This effect,
however, is difficult to write using a simple formula for a single
particle due to its random nature. Therefore, the phenomenon
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is usually described with a statistical approach considering the
averaged (collective) motion of many particles.

The collective motion of particles in a plasma is fully
characterized by the Boltzmann equation or its moments.
Within the drift–diffusion approximation the steady-state
momentum equation is

nsus + Ωs × (nsus) = qs

|qs |µsnsE − ∇(Dsns) ≡ Gs (4)

where Gs is the drift–diffusion particle flux without a magnetic
field for the species ‘s’, us is the mean velocity, ns is the species
density,

Ωs = qs

|qs |µsB = qs

|qs |
e

msνm,s

B

is a Hall parameter vector which represents the Hall parameter
(|Ωs | = �s = qs

|qs |µs |B| = ωc,s

νm,s
) along the different space

dimensions, ωc, s = (|qs |B)/ms is the cyclotron frequency of
species ‘s’, µs is the species mobility without a magnetic field,
Ds is the diffusion coefficient without a magnetic field and νm,s

is the momentum transfer collision frequency of species ‘s’.
By applying cross and dot products with Ω to equation (4) we
obtain the drift–diffusion expression for charged particle flux
in a plasma with a magnetic field [2]:

Γs ≡ nsus = 1

1 + �2
s

(Gs + Ωs(Ωs · Gs) − Ωs × Gs). (5)

3. Numerical model and simulation conditions

The numerical model used here is an explicit PIC-MCC model
[14–16]. The model is 2D in the configuration space and 3D
in the velocity space (2D3V). The method used is based on
the classical leap-frog Buneman–Boris algorithm scheme [14].
The PIC-MCC numerical technique provides the solution of
the Boltzmann equation for the considered species and thus
provides an accurate distribution function and resolves the
full plasma dynamics. The major drawback of the explicit
PIC-MCC method compared with the fluid approach is the
considerable computational resources required for plasmas
with high density in two and three spatial dimensions. In
practice, this limits the modeling to plasmas with electron
densities (ne) in the order of ne = 1014–1015 m−3 if we want
to use a regular computer workstation. A further increase in
the density would require a large-scale computer cluster or a
supercomputer for the domain size considered in this work. At
first glance, it appears that the PIC-MCC method would not
be suitable for numerical modeling of most of the plasmas of
practical interest, with densities usually from ne = 1015 m−3

up to ne = 1019 m−3 (the latter is the maximum value for high-
power negative ion sources [4, 7]). However, one important
observation found here allows us to use the PIC-MCC method
at low densities and claim the validity of the obtained results for
higher densities as well; the electron transport characteristics
across the MB discussed in this work appear to scale linearly
with the electron density. This will be shown in detail in
section 5, subsection 5.1.

The species considered in the simulations are electrons
(e), positive hydrogen ions (H+) and hydrogen atoms (H).

Table 1. Collision processes.

Reaction
number Process Reference

(1) e + H → e + H (elastic) [17, 18]
(2) e + H → e + H∗ [19]

(five energy levels
including the ionization
process taken as an excitation)

(3) H+ + H → H+ + H (elastic) [20]
(4) H+ + H → H + H+ (charge exchange) [20]

Table 2. Common external simulation parameters.

Description Symbol Value

Gas pressure p 0.3 Pa
Gas temperature TH 1000 K
Maxwellization temperature TM 6 eV
Gas density NH 2.17 × 1019 m−3

Upstream wall potential (x = 0) �1 0 V
Downstream wall potential �2 25 V

(x = xmax)
Standard deviation σB 1 cm

The last of these are assumed to have a homogeneous density
(NH) which is calculated from NH = p/κTH, where p is the
gas pressure, κ is the Boltzmann constant and TH is the gas
temperature in ‘K’. The species composition is intentionally
simplified in order to omit any additional effects due to more
complex plasma chemistry. The processes taken into account
and the sources for the cross-sections are summarized in
table 1.

The main external parameters (discharge conditions) used
within the simulations are denoted in table 2. The gas pressure
is relatively low (0.3 Pa) and corresponds to the typical values
in high-power negative hydrogen ion sources [7]. The low gas
pressure leads to a mean free path of the electrons in the order
of 20–50 cm, and 5–10 cm for the ions. The low pressure and
the relatively small MB width considered here (around 2 cm
for most of the simulations) mean that for a magnetic field
of 5 mT the electrons are highly magnetized (Larmor radius
0.1–0.2 cm) and the ions are weakly magnetized (Larmor
radius 2–4 cm).

The geometry considered in the simulations is a 2D
rectangle (see figure 1). Most of the real sources with
magnetic field are 3D systems and often without any symmetry
axis/plane. Therefore, 2D modeling of such devices is an
approximation assuming that along a certain dimension the size
of the device will be very long. Here we consider two basic
cases corresponding to two extreme cases—that the device is
very long along the magnetic field direction and very long in
the direction perpendicular to both the magnetic field and the
plasma flow. The reality will be somewhere in between and
will be an interplay of both.

In addition, usually in negative ion sources there is
a plasma grid [7] (or here, the downstream wall), the
first electrode of which is biased at the plasma potential
or slightly higher in order to allow optimal negative ion
extraction. Although negative ions are not included here, we
use ‘extraction’ in order to have similar conditions and to obtain
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Figure 1. Schematic representation of the geometry and field configuration for the two modeled cases: (a) case D1 with B = (0, By(x), 0)
and (b) case D2 with B = (0, 0, Bz(x)). These figures are schematic representations of the configuration and do not correspond to the exact
dimensions of the simulated cases which change throughout the paper.

the right behavior of the electrons which basically determine
the overall plasma behavior due to the low electronegativity
in these sources. By ‘extraction’ here we do not mean a full
extraction system but just a simple positive bias applied at the
downstream wall (see figure 1). Such a configuration does not
exactly represent a real extraction system but it is sufficient
to get a similar global potential and particle behavior without
resolving the extraction holes. The bias value chosen here
(25 V) is slightly higher than the peak plasma potential without
any bias (determined by TM and the geometry). Thus in the
simulations, there is always a potential attracting the electrons
crossing the barrier toward the downstream wall.

The magnetic field is directed along the ‘z’ or ‘y’ axis (see
figure 1) with a Gaussian profile along ‘x’, centered at x0:

By,z(x) = By0,z0 exp

[
− (x − x0)

2

2σ 2
B

]
. (6)

In order to keep the model as general as possible, we
specify no particular type of discharge. Instead, the plasma
is sustained by artificial Maxwellization (the process of
numerical enforcement of Maxwell distribution with a given
temperature) of the electrons, and artificial injection of a
constant number of charged particles in the upstream region.
Although in this way the simulation is not completely self-
consistent, this approach allows us to impose the electron
temperature in the upstream region (defined roughly as x ∈
(0, 4 cm)) which facilitates the comparison of the different
cases considered here. The Maxwellization and particle
injection are performed in the region x ∈ (0.5, 3.33) cm, i.e.
outside the MB (x < 3.33 cm), so that they do not influence
the electron transport in the MB and outside of the wall sheath
near the left-hand side wall (W1, see figure 1) in order to allow
undisturbed wall sheath formation. The latter is preferable if
we want to have a potential barrier near the wall corresponding
to the imposed electron temperature.

We use both Maxwellization and particle injection because
with only one of them the model cannot reach a steady state.
If we use only Maxwellization the temperature imposed on the
plasma will be different from the self-consistent temperature,
which will be able to sustain the discharge in a steady state.
Therefore, the discharge will vanish if the imposed temperature

is lower than the self-consistent temperature or the density
will increase infinitely if it is higher. If we use only particle
production/injection (with certain initial energies sampled
from the Maxwellian distribution with certain temperature) we
will face a situation where the high-energy electrons will be lost
quickly on the walls but the low-energy particles will be held
by the potential and thus the density will increase continuously
(no steady state again). Therefore, both Maxwellization and
injection are required to ensure the existence of steady state.
Both procedures are described in detail in the appendix.

The explicit PIC method requires several conditions to
be fulfilled for stable operation [14]. In the simulations
carried out within this work we have the following conditions:
�x/λD ≈ 0.55, vthdt/�x ≈ 0.15, ωp/dt ≈ 0.06, where �x

is the cell size, λD is the Debye length, dt is the time step,
vth = √

2eTe/me is the electron thermal velocity (Te in ‘eV’)
and ωp is the plasma frequency. The simulation time was up
to 0.3 ms in order to reach the steady state.

4. Basic configurations of the magnetic barrier

In this section we present the results for simple square-
shaped geometry and different directions of the magnetic field
and the boundary conditions for the side walls. The left-
hand side wall (x = 0) is conducting and grounded. The
length of the walls is Lx = Ly = 10 cm. The charged
particles are injected and Maxwell distribution is enforced in
the region x ∈ (0.5, 3.33) cm according the ‘sine’ distribution
(equations (A.1) and (A.2) in the appendix) of the event
frequency. The MB is positioned in the middle of the
domain x0 = 5 cm; it has a Gaussian distribution along ‘x’
(equation (6)) with σB = 1 cm and is homogeneous along
‘y’. The magnetic field is always perpendicular to the main
plasma flow direction (along x), i.e. we have only ‘Bz’ or
only ‘By’ components of the magnetic field with Bz0 = 5 mT
and By0 = 5 mT, respectively. The right-hand side wall
(x = 10 cm) is biased with 25 V. The left-hand side region
x ∈ (0, 4) cm will be further denoted as the upstream region
with the right-hand side x ∈ (6, 10) cm as the downstream
region. The side walls (y = 0 cm or y = 10 cm) are dielectric
or conducting and will be further denoted as ‘D’ configurations
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(for dielectric) and ‘C’ configurations (for conducting). The
D1 and C1 cases will correspond to the magnetic field directed
along the ‘y’ axis and D2 and C2 cases will correspond to
the magnetic field directed along the ‘z’ (perpendicular to the
simulation plane).

4.1. Dielectric side walls

In this subsection we analyze two basic cases: with the
magnetic field directed toward the side walls (figure 1(a))
B = (0, By(x), 0), denoted as configuration D1, and the
magnetic field directed perpendicular to the plane of simulation
(figure 1(b)), i.e. B = (0, 0, Bz(x)), which will be denoted as
configuration D2.

Configuration D1: bounded plasma infinite in ‘z’ (figure 1(a)).
The magnetic field hasBy component only: B = (0, By(x), 0),
E = (Ex, Ey, 0), domain: Lx = Ly = 10 cm.

For this configuration we have the following drifts allowed
in the system

Single particle drifts (equations (2) and (3)):

vE×B = (0, 0, Ex/By) ‘z’ component only, (7)

v∇B =
(

0, 0, − q

|q|
1

2
v⊥rL

∇xBy

By

)
‘z’ component only. (8)

The guiding center particle drifts are in the ‘z’ direction only
where we have assumed infinity. This means that there are no
particle drifts along ‘x’ and thus we should not expect any other
type of transport across the barrier except due to collisions.

Collective motion drifts (equation (5)):

	x = Gx

1 + �2
, 	y = Gy, 	z = �

1 + �2
Gx. (9)

As with the separate particle drifts, the collective particle drifts
along ‘x’ are due to ‘classical’ collisional particle diffusion in
the magnetic field [12, 13]. The particle flux is reduced due to
the magnetic field as 1/(1 + �2) and the MB is characterized
by high stopping power for the electrons. We recall that
this configuration approximately corresponds to the 1D case
considering the transport across the barrier while the other
dimensions are assumed to be infinite [3].

Configuration D2: bounded plasma infinite in ‘z’ (figure 1(b)).
The magnetic field has Bz component only: B = (0, 0, Bz(x)),
E = (Ex, Ey, 0), domain: Lx = Ly = 10 cm.

Single particle drifts (equations (2) and (3)):

vE×B = (Ey/Bz, −Ex/Bz, 0) ‘x’ and ‘y’ components,

(10)

v∇B =
(

0,
q

|q|
1

2
v⊥rL

∇xBz

Bz

, 0

)
‘y’ component only. (11)

Here the E × B particle drift (Ey/Bz) allows transport across
the barrier.

Collective motion drifts (equation (5)):

	x = 1

1 + �2
(Gx + �Gy), 	y = 1

1 + �2
(Gy − �Gx),

	z = 0. (12)

Figure 2. Electron density (m−3) distribution for both
configurations as they are denoted in the figure. Below: (c) a
cross-section at y = Ly/2 = 0.05 m, in the middle of the domain
shown with green line in (a) and (b).

The electron flux across the barrier 	x has two components,
due to collisions (Gx/(1 + �2)) and (�Gy/(1 + �2)) related
to the E × B and diamagnetic drifts.

The results for the main characteristics in both cases
(D1 and D2) will be presented in the next five figures which
will be done by making a parallel between both cases for
every plasma characteristic—potential, density, fluxes, etc.
Figures 2 and 3 present the results for the electron density
and electric potential distribution. Configuration D1 with
By field apparently does not allow for significant transport
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Figure 3. Electric potential (V) distribution for both configurations
as they are denoted in the figure. Below: (c) a cross-section at
y = Ly/2 = 0.05 m, in the middle of the domain shown with green
line in (a) and (b). In (c) the shape and positions of the particle
injection and Maxwellization zones are also shown.

across the barrier and provides symmetric density and potential
distribution (figures 2(a) and 3(a)). A magnetic field strength
of 50 G is enough to magnetize the electrons for the current
conditions and thus to make the collisional transport across
the barrier negligible. The barrier becomes a good ‘isolator’

and the bias at the extraction wall (W3) does not influence
the upstream potential, which is determined by the electron
temperature and the size of the upstream region. In the D2 case
the E×B drift leads to significant losses across the barrier and
thus to a reduction in the density (figure 2(b)) and an increase in
the potential (figure 3(b)) in the upstream region. The potential
profile cross-sections (figure 3(c)) clearly show an important
difference between both—due to the relatively bad ‘isolation’
provided by the barrier in the D2 case, the extraction potential
(25 V) penetrates significantly and the upstream potential is
forced to increase above that value in order to preserve the
plasma quasi-neutrality. With respect to negative ion sources
with low electronegativity (like the H− sources), the potential
profile is a crucial factor and is still determined by the electron
dynamics. If one needs to extract negative ions, they (the
negative ions) should ‘see’ an attracting potential, i.e. the
potential should increase toward the extraction wall (grid).
Obviously, case D2 does not fulfill this condition and does
not allow negative ion extraction with the chosen bias value.
The bias has to be increased further in order to form an
attracting potential profile. In contrast, configuration D1
provides an increasing potential toward W3 and thus allows
for efficient negative ion extraction. Therefore, in general, if
a high reduction in the electron current is required, the system
should mimic the D1 configuration—with the magnetic field
perpendicular to the wall in close proximity and the other side
walls (in the ‘z’ direction) relatively far in order to reduce the
effects of the E × B drifts.

The differences in the considered configurations result
in differences in the electron temperature spatial distribution
(figure 4). The temperature calculation here is based on
the random motion energy, i.e. the directed motion energy
is subtracted from the temperature calculation. Similarly to
the density and potential, the temperature in configuration D1
(figure 4(a)) has a symmetrical distribution concentrated in the
upstream region. In the downstream region there is no plasma
in practice for D1 (see figure 2(c)). For configuration D2
the temperature distribution extends toward the downstream
region near the upper side wall (W2), where the E × B drift
toward the downstream wall is considerable.

The higher plasma penetration in this case is also well
seen from the cross-section of the electron temperature plot
(figure 4(c)). The temperature in the MB (figure 4) in D2
is considerably higher than the D1 case. Figure 5 represents
the electron fluxes in both cases by overlapping the electron
flux stream lines (white lines) and the flux magnitude (the
color surface). While the D1 case has an ordinary pattern
corresponding to the particle creation and heating in the
upstream zone, the D2 case shows a much more complicated
behavior. It appears that, in the upstream region, the electrons
circulate in a counter-clockwise direction, enter the filter at the
lower wall (W4), then penetrate the downstream region at the
upper side wall (W2) and circulate in the downstream region in
a clockwise direction. While this behavior makes sense from
a fluid point of view, it is a bit unexpected if we consider it
from the particle point of view. In the next subsection we will
analyze the obtained results in detail. The ion flux distribution
and stream plots (not shown here) show a pattern typical of
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Figure 4. Electron temperature (eV) distribution for both
configurations as they are denoted in the figure. Below: (c) a
cross-section at y = Ly/2 = 0.05 m, in the middle of the domain
shown with green line in (a) and (b).

a plasma without a magnetic field. The reason for this is the
weak magnetization of the ions because the ion Larmor radius
is larger than the MB size.

The differences in the electron flux distribution in both
cases result in a rather different distribution of the electron

Figure 5. Electron flux (m−2 s−1) distribution: The color
corresponds to the flux magnitude and the stream lines correspond
to the flux direction.

losses at the walls (figure 6). In the D1 configuration the
electron and ion losses (not shown here) are mainly in the
upstream region—the electrons are detained in the upstream
region due to the MB and the ions due to the high positive bias
at the downstream wall (W3). In the D2 case a considerable
part (figure 6) of the electrons are lost in the downstream region
at the extraction wall (W3) due to the E × B leakage and the
attracting bias at W3, while the ion wall losses (now shown) are
slightly altered compared with D1, due to the different potential
distribution (figure 3). We recall that W1 wall is grounded
and therefore at steady state the total electron and ion current
(flux) at W1 and W3 should be equal. There is, however, no
requirement to have ambipolar diffusion, i.e. equal local values
of the electron and ion fluxes.

4.2. Qualitative electron transport analysis

Before continuing further with the presentation of results we
would like to briefly discuss the plasma/particle transport for
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Figure 6. Electron wall flux distribution. The figure starts (distance
= 0 m) at the lower left corner of the domain and continues
up–right–down–left. Distances 0 m and 0.4 m are the same points.

the considered configurations. The discussion is based on
well-known laws and does not represent new physics, but
we find it useful for a better understanding of the results
presented in this work. The D1 configuration has collisional
transport only across the MB and thus it gives a rather
simple and straightforward behavior. Therefore, we will focus
our attention on D2 only. As already mentioned, for this
configuration the particles have E × B drift with ‘x’ and ‘y’
components and ∇B drift with ‘y’ component only. This
results in the following picture for the particle motion in
the domain (see figure 7(a) presenting parts of real particle
trajectories from the simulations). The electrons are injected
in the upstream region with random velocity direction and
thus most of them will move toward the MB—one part of
them directly and the other part after reflection from the
wall potential at W1. When they reach the barrier, due
to their vx velocity component they will be subjected to a
Lorentz force pushing them in the positive ‘y’ direction, i.e.
v = (vx, 0, 0) ⇒ FL = (0, Fy, 0) ∼= (0, evxBz, 0) and
thus increasing their vy velocity component (in the positive
direction). Having considerable positive vy velocity results
in a negative Lorentz force (FL

∼= (−evyBz, 0, 0)) in the ‘x’
direction, which will push them back in the upstream region
as shown in figure 7(a). On average this motion will lead to a
counter-clockwise circulation of the electrons in the upstream
region, observed also in figure 5(b) (on average this produces
a diamagnetic drift upward). This behavior, however, will
be typical of electrons which do not have considerable initial
negative vy velocity. If they have, their vy velocity in the barrier
will not become positive and the electrons cannot return to the
upstream region. If an electron enters the barrier near the upper
wall W2 (in the wall sheath) it will have a significant E×B drift
velocity vE×B due to the strong positive electric field Ey and
thus it will be able to cross the barrier (figure 7(a)). If it enters
the barrier slightly below (in the presheath [21]) the E × B

drift will be weaker and thus the ∇B drift will also influence
the trajectory. In any case, the electron will probably cross the
barrier in a trajectory similar to that shown in figure 7(a). A
close examination of the ‘x’ component of the electron flux

Figure 7. Particle (a) and fluid (b) view on the electron flux
formation.

near the walls reveals that in fact the electron transport in
the sheath itself does not give rise to a major contribution
to the total electron current, but that the electron transport
happens mainly in the presheath (plasma bulk near the wall
but outside the sheath). There, the electric field is weaker
than in the sheath but the higher density and larger area lead
finally to a higher flux. Due to the flux complexity near the
walls (figure 5) we cannot give an exact number of sheath and
presheath contributions to the overall current. If an electron
enters the barrier near the center without being reflected, it will
be a subject of negative ∇B drift only because Ey ≈ 0 in that
area.

There is a certain probability that the electrons entering
the downstream region will not be lost at the biased wall (W3).
They could then go back to the upstream region at the lower half
(y < 4 cm)of the MB due to the negativeE×B drift. They also
could be reflected by the magnetic field resulting, on average,
in a clockwise circulation in the downstream region (observed
also in figure 5(b)). And finally, the particles can enter the MB
and cross it due to collisions (not shown in figure 7).

The above picture of particle motion, however, does not
fit very well with the average (directed) electron motion in the
MB seen in figure 5(b). It appears that the electron flux enters
the barrier at the lower side wall (W4), moves up in the barrier
(in the positive ‘y’ direction, perpendicular to the Bz field) and
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then goes out of the barrier and enters the downstream region
at the upper side wall (W2). Both ‘points of view’ (particle and
collective) agree that the electrons will enter in the upstream
zone at W2 but disagree as to where the electrons will enter the
barrier. To understand why, we need to analyze the electron
flux components (equations (12)).

In addition to the collisional transport (diffusion), there
are two more components: E × B and diamagnetic drifts
(figure 7(b)). The first one (E × B drift velocity, uE×B ∝
(E × B)) is a direct result of the averaging of the E × B

drift of the separate particles. The diamagnetic drift, however,
(diamagnetic velocity, uD ∝ −(∇p × B), where p is the
pressure) has no particle analog and is a fluid-only drift
(i.e. it is a result of averaging). This is a result of the
density and temperature gradients (i.e. pressure gradient).
The diamagnetic drift is not necessarily due to real drifts of
particles (see [12, 13]). Even if there are no guiding center
drifts of the particles, but there is a gradient of the density
or temperature, the diamagnetic drift will be present. So
the high value of the flux (directed velocity) magnitude in
the MB (see figure 5(b)) may not correspond to real particle
drifts! This is partially the case here. Figure 5(b) shows
peak electron flux around the point y = 0.02 m, x = 0.047 m
(the lower end of the barrier) directed upward (positive ‘y’).
However, the allowed particle drifts at this point are ∇B and
E×B pushing the particles together downward and toward the
upstream region (see figure 7(a)). The particles are allowed
to move upward only due to collisions, but this effect is
relatively weak. So despite the fact that the real drifts are
directed toward the upstream zone and downward, the flux is
directed upward (uD,y > 0, uD,x ≈ 0). This is due to the
dominant diamagnetic drift at that point as a result of the large
density (see figure 2(b)) and electron temperature (figure 4(b))
gradients. Thus, the obtained flux pattern in the MB does
not exactly represent the real particle drifts, but a flux due to
averaging. The above picture is verified by close trajectory
examination at the considered point. This, however, does
not mean that the diamagnetic flux is spurious. As already
mentioned, the particles coming from the upstream region and
facing the magnetic field also contribute to the diamagnetic
drift. The ∇B drift of separate particles is missing [12, 13]
in the fluid plasma representation and does not have a direct
fluid analog. However, as shown in [22], the diamagnetic
drift and pressure gradient of charged particles are related
to the magnetic field inhomogeneity and particularly to ∇B2,
which leads to a relation between the particle pressure and the
magnetic pressure (proportional to B2).

Apparently, the E × B drift in configuration D2
compromises the electron-stopping ability of the barrier. The
current (mainly due to E × B drift) in D2 is three orders of
magnitude higher than the drift due to collisions (12.2 mA for
D2 against 0.0105 mA for D1, ratio = 1160). To fix this, we
need to make the plasma configuration closer to D1, i.e. to build
D2 with very large Ly . In this way the E × B current could
become comparable to and even smaller than the collisional
current across the barrier. This is studied in section 6 of this
paper. However, this is usually not a practical method due
to the unacceptable length of the device. Another popular

Figure 8. Schematic representation of the geometry and field
configuration for the cases (C1 and C2) with conducting side walls.

method is to completely remove the E × B drift across the
barrier by building the discharge configuration with closed
E × B drifts [23]. The idea is simple—instead of making
Ly very long let us wrap around the geometry. In cylindrical
coordinates, the magnetic field will be in the radial direction
and due to the axial symmetry no azimuthal electric field should
exist. Any axial electric field (through the MB) will cause an
azimuthal E × B current flowing in a closed loop, i.e. without
crossing the barrier. Some devices such as Hall thrusters [24]
and cylindrical magnetron discharges [25] use this effect to
reduce the transport across the MB. However, it should be noted
that such devices may be subjected to significant instabilities
causing transport across the magnetic field, i.e. anomalous
transport [26].

4.3. Conducting (and grounded) side walls

For the sake of completeness we study a similar configuration
but with conducting and grounded side walls (figure 8). We
consider again two basic cases with perpendicular direction of
the magnetic field: B = (0, By(x), 0) denoted as configuration
C1 and B = (0, 0, Bz(x)) denoted as C2. The conducting
parts of the side walls are separated from the biased wall (W3)
by a 1 cm dielectric (figure 8) in order to avoid sharp potential
variation and thus strong electric fields.

A configuration with conducting walls generally allows
highly nonambipolar plasma diffusion which may change the
overall picture of electron and ion losses. Indeed, all plasma
parameters are slightly altered but the general picture with
respect to the MB operation is not considerably changed, and
the results are qualitatively similar to the cases with dielectric
walls. Therefore, we will not present a full set of results
similar to the dielectric side wall cases, but only the results
where significant differences are observed. Figure 9 presents
the potential distribution for the C2 configuration. It is worth
noting that for both configurations with grounded side walls
(C1 and C2) the peak potential value in the upstream region is
lower than the corresponding cases with dielectric side walls
(see figures 3 and 9).

The reason for the relatively small differences between
the dielectric and grounded side wall cases is that the electron
drifts across the barrier are not related to the nature of the walls,
but to the fact that the walls (regardless of their type) introduce
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Figure 9. Electric potential (V) distribution for case C2
(Bz magnetic field).

Figure 10. Electron wall flux distribution for the configurations
with grounded side walls. The figure starts (distance = 0 m) at the
lower left corner of the domain and continues up–right–down–left.
Distances 0 m and 0.4 m are the same points.

particle losses and form a wall sheath/presheath that reflects
the particles from the walls. Of course the sheath/presheath is
slightly different in the two cases and this leads to the observed
differences, particularly in the extracted current (see the next
section).

Figure 10 shows the electron losses at the walls. The
concept of Simon diffusion (reduced confinement due to short
circuit wall currents) [21, 27] is not directly applicable here
because the plasma is created outside the magnetic field region.
Therefore, we do not observe considerable electron losses at
the walls facing the magnetic field, but instead throughout the
upstream region and at the extraction wall, which attracts the
electrons to the downstream region.

5. Scaling laws for configuration with E × B drift
across the magnetic barrier (configurations D2
and C2)

In this section we study the scaling of the MB performance
with respect to several different parameters: electron density,

Figure 11. Extracted electron current for different peak electron
densities in the upstream region.

magnetic field intensity and barrier size along ‘x’. We are
mainly interested in how the total extracted electron current
(Iextr) going through the MB and reaching the biased wall
depends on these parameters. Iextr is determined by counting
all electrons reaching W3 for every time step and dividing their
charge by the time step. All results will be for configurations
with E×B drift, i.e. D2 and C2. The D1 and C1 configurations
have only collisional diffusion across the barrier where the
trends will follow the 1D solution for the problem [3].
Therefore, we will not analyze D1 and C1 here.

5.1. Scaling with the plasma density

The plasma density in these simulations is changed by
changing the particle injection rate and namely the parameter
νinj. The plasma density is proportional to νinj and the rest
of the plasma characteristics are the same as those for the C2
and D2 configurations used in section 4 (see the comments at
the beginning of section 4). The Maxwellization frequency
need not be changed because the increase in the electron
density automatically increases the collision rate and thus the
same percentage of electrons will collide every time step, thus
preserving the same temperature and distribution function.

Generally speaking, the increase in the plasma density
reduces the wall sheath thickness. However, with the electron
temperature fixed the potential drop between the MB (domain)
center and the side walls is preserved, which results in a
similar E × B velocity on average and in linear dependence
(figure 11) of the extracted current on the plasma density (or
to the peak density), Iextr ∝ A n0, where A is a constant. The
PIC simulations show (figure 11) that the relation is linear for
two orders of magnitude variation of the density. There is no
reason for the linear dependence to fail outside the simulated
region of densities, unless some nonlinear processes start to
play a very significant role in the discharge and the electron
transport across the barrier. Such processes could be, for
example, Coulomb (electron–ion) collisions or instabilities.
The Coulomb collisions become important at high densities (in
the order of 1018 m−3) for low electron temperatures (i.e. in the
MB) and they are expected to enhance the transport across the
barrier due to increased collisional transport. The instabilities
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are relatively weak for the considered configurations and they
seem to give a small contribution (see section 6). In general,
the instabilities are nonlinear phenomena and if they determine
the electron transport across the barrier, it is not clear how the
extracted current will scale with the plasma density.

Another possible issue related to the density scaling is
the ratio between the Larmor radius and the sheath size. The
question that arises is what will happen to the electron transport
if the Larmor radius becomes larger than the Debye length,
or even the sheath size (rL > λD)? For a magnetic field
of 5 mT the electron Larmor radius is in the order of 1 mm,
and for the highest density case simulated here (peak electron
density 3 × 1015 m−3) the Debye length is in the order of
0.5 mm, i.e. rL > λD. The linear dependence is apparently still
satisfied. The reason for this is probably the following: (1) the
electron transport in the sheath itself does not provide the
major contribution to the total electron current, but the electron
transport happens mainly in the presheath (see section 4.2).
(2) Even if the transport in the sheath becomes significant and
predominant under certain conditions, the rL/λD ratio would
still not affect the electron transport because what is important
is whether or not the electrons are reflected by the sheath. If
the particles are reflected they will contribute to the E×B drift
having trajectories similar to those shown in figure 7(a) near the
side walls. In the extreme case of a very thin sheath (rL � λD at
a very high density) the reflection becomes a ‘point’ reflection
from the wall, and trajectory becomes cycloid-like giving rise
to the so-called ‘paramagnetic drift’ [22]. This gives the same
effect as the E × B drift, forcing the particle to drift along
the wall and to cross the MB. In fact any process (not only
electrostatic) causing electron-wall reflection (change in the
vy velocity sign) will produce a paramagnetic drift.

The observed linear scaling of the extracted current with
density is very important for our study, because it makes the
results obtained in this work applicable to conditions with
densities outside the simulated region, and thus applicable to
a wider range of plasma devices.

5.2. Scaling with the magnetic field magnitude

In the current set of simulations, the magnetic field distribution
remains Gaussian (equation (6)) and we change Bz0 only.
The rest of the simulation conditions remain the same as in
configurations C2 and D2 used in section 4 (see the comments
at the beginning of section 4).

The obtained results are presented in figure 12. For
conditions ensuring that the majority of the electrons are
magnetized, i.e. �e � 1 and rL  domain size (see section 2,
equation (5)), the expected relation for current scaling with
magnetic field is approximately Iextr = A/ Bz, max where A

is a constant. This is basically the relation expected for the
E × B drift (see equation (12)), i.e. we assume that it gives
the major contribution to the total current. As can be seen
from the figure, this relation is well satisfied for values above
3.5 mT. Below 3 mT the electrons are weakly magnetized and
the relation is more complicated. It should also be noted that
the 1/B relation is derived with a constant electron temperature
assumption which is not exactly true for the real simulation.

Figure 12. Extracted electron current as a function of the peak
magnetic field strength. The lines represent fits with
Iextr = A /Bz, max using the results for Bz,max > 3.5 mT.

This could be a reason for certain deviation of the results from
the 1/B relation.

5.3. Scaling with the magnetic barrier size along the
magnetic barrier (along ‘x’)

In this series of simulations we consider a slightly modified
geometry in which the domain size in the ‘x’ direction is larger:
Lx = 15 cm, Ly = 10 cm. The domain is taken as larger in
order to allow a larger MB width to be tested and to observe
the system behavior as a function of significant variation of
the considered parameter. The parameter varied here is the
barrier length in the ‘x’ direction Lm (denoted as the ‘barrier
width’), i.e. along the plasma flow. As shown in figure 13(a),
Lm = 2 cm corresponds to equation (6) (Gaussian distribution)
with x0 = 5 cm, σB = 1 cm. Larger barrier widths correspond
to stretched versions of the Gaussian profile (see figure 13(a)).
This approach provides a pulse-like shape for the magnetic
field profile while preserving the same smooth fronts on both
sides. The rest of the simulation conditions remain the same
as in configurations C2 and D2 used in section 4 (see the
comments at the beginning of section 4).

The extracted electron current decreases monotonically
with the increase in Lm. Thus, the barrier width appears as
another parameter giving a relatively simple way to enable
additional reduction in the extracted electron current and thus
increased barrier efficiency.

In all simulations the extracted electron current for
configurations with conducting side walls is higher than the
dielectric side wall cases. The different gradients of both
curves (figure 13(b)) are probably related to the different
potential profile established at the W2 wall along the MB. In
the case of conducting side walls a higher potential barrier is
established between the plasma and the side wall W2, thereby
reducing the electron losses at W2, while they drift toward the
extraction wall, enhancing the E × B drift. We would like to
note that the results shown in figure 13(b) (Lm = 2 cm) do
not match the results in figure 12 (5 mT) due to the different
domain size in the ‘x’ direction used in the calculations.
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Figure 13. (a) Magnetic field profiles for three lengths of the MB;
(b) extracted electron current as a function of the barrier width Lm.

6. Convergence to the 1D solution with the increase
in the transverse domain size Ly

In this section we study the convergence of the 2D solutions to
the 1D solution. By 1D solution we mean the solution along
the ‘x’-axis, with the domain lengths of the other axes (‘y’
and ‘z’) assumed to be infinite. In the 1D solution there is no
E ×B drift near the side walls because there are no side walls,
and thus the particles cross the barrier due to collisions only.
In principle, we expect to see convergence of the 2D solution
as the transverse domain size Ly increases, thus approaching
the infinity assumption.

Here we test several configurations similar to D2 but with
a different size Ly . Except for Ly , the rest of the simulation
conditions remain the same as in configurations C2 and D2
used in section 4 (see the comments at the beginning of
section 4). Figure 14 shows the cross-sections of electron
density and electric potential in the middle of the domain
(Ly /2). The 2D solutions of density and potential clearly
approach the 1D solution for large Ly . The density (at Ly /2) for
the largest Ly becomes very close to the 1D solution, showing
relatively weak influence of downstream extraction potential
to the plasma in the upstream region. The lack of a well-
pronounced density peak in the 2D solutions, compared with
the 1D case [3], is due to the fact that in the latter the electrons
have very long residence time in the MB (thus forming a peak

Figure 14. Cross-sections along ‘x’ at y = Ly/2 for configurations
with dielectric side walls: (a) electron density; (b) electric potential.
The 1D solution along ‘x’ for the same conditions is also shown.

Figure 15. Extracted electron current as a function of the domain
transverse size Ly . The 1D solution is also shown.

there). If we look at the extracted current (figure 15), there is
a huge difference between the 1D solution and the largest Ly .
In addition to the collisional and the E ×B drifts, at relatively
large Ly anomalous transport due to plasma instabilities starts
to appear (figure 16). The instability forms plasma potential
and density variations (wave) along the ‘y’-axis. The presence
of maxima and minima of the potential (figure 16(b)) means
that there exists an Ey field causing E × B drift across the
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Figure 16. Color map of electron density (a) and potential (b) for a
configuration with dielectric side walls and size Lx = 10 cm,
Ly = 30 cm.

whole barrier (not only near the side walls), which gives rise
to small spikes in the plasma density (figure 16(a)), formed
by electrons crossing the barrier. The instability appears to be
drift instability [12, 13] originating from the large temperature
and density gradients across the MB (along ‘x’) causing a
significant diamagnetic drift perpendicular to the magnetic
field and thus drift waves propagating in the ‘y’ direction.
From the results it follows that for the current configuration,
even for Ly = 1 m the collisional and anomalous transport are
responsible for less than 30% of the whole extracted current,
and the main transport mechanism is still the E × B drift.
The instabilities, their effect on the particle transport and their
contribution to the overall current will be analyzed in detail in
another paper.

Going back to figure 15 and the extracted current, we are
not able to reach a long enough Ly where the total extracted
electron current will be close to the 1D solution result. We
expect that even at a very long Ly (several meters) they will
not coincide completely due to the presence of anomalous
transport.

7. Conclusions

This paper illustrates and quantifies the fact that in low-
pressure, low-temperature plasma devices the walls play a very
important role in the electron transport through a magnetic
field. This is especially true in the case of the magnetic
barrier used in negative ion sources for neutral beam injection
in fusion devices. In such devices, the localized plasma
source (producing plasma outside the MB) creates an electron
pressure (pe) gradient which leads to a ∇pe × B drift
(diamagnetic drift) that tends to turn around the source region
(diamagnetic current). If there is no wall perpendicular to the
∇pe ×B current then there is a closed drift current. However,

if the ∇pe × B current goes to a wall as in the negative
ion source (and in configurations D2 and C2), then part of
the current is redirected by the wall, due to the E × B drift
associated with the field in the presheath between the plasma
and the wall (the sheath gives a relatively small contribution).
As a result, the electron current through the perpendicular
magnetic field is significantly enhanced by the side walls, if
the magnetic field is perpendicular to both the plasma flow
and to the electric field formed near the walls (wall sheath
and presheath), regardless of the wall material (conducting or
dielectric). At low gas pressures the electron transport through
the MB is dominated by this drift and it is orders of magnitude
higher than the electron collisional transport (calculated from
the C1/D1 cases).

In this work we have performed a broad parametric study
giving the scaling of electron transport for different discharge
characteristics: plasma density, magnetic field magnitude,
magnetic barrier size and domain size. The total current of
electrons crossing the barrier is found to scale linearly with
the plasma density, which extends the validity of the obtained
results to a wide range of plasma density values, far beyond
the attainable range with our numerical code and the available
computer resources. The obtained electron scaling with the
magnetic field strength (Iextr ∝ 1/Bz) basically confirms
the conclusion of dominant E × B drifts when the electrons
are magnetized. Another parameter which also allows a
reduction in electron transport (or enhancement of the barrier
performance) is the magnetic barrier size along the plasma
flow. The increase in the magnetized path for the electrons
effectively reduces the total electron current, and thus together
with the magnetic field strength gives two parameters, which
could be relatively easily controlled to reduce the electron
transport across the barrier.

Our attempt to reach or just approach the 1D solution by
extending the transverse domain length shows that even for
a large transverse size the E × B drift remains the primary
reason for the electron transport (at least for the considered
configuration and pressure).

Finally, we would like to note once again that although
this study is initiated by negative hydrogen ion sources it gives
the general behavior of plasmas in bounded configurations.
It should also be stressed that this work considers a low-
pressure plasma, with gas pressure 0.3 Pa. Any increase in the
pressure will proportionally increase the collisional transport
(diffusion) and thus will make the E × B and anomalous
drifts less important. For example, if we increase the gas
pressure 20 times (up to 6 Pa), by looking at figure 15, roughly
speaking, we can conclude that the collisional transport will
become comparable to and even more important than the other
types of transport. Thus the picture will be slightly different.
The particular pressure values at which this becomes true will
depend on the particular gas and discharge configuration.
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Appendix. Maxwellization and particle injection
procedures

The electron Maxwellization of electrons is done by virtual
‘Maxwellizing collisions’. Every time step a certain number
of electrons are picked up depending on the spatial profile
of the collision probability we impose, and their velocity is
changed by randomly sampling from isotropic Maxwellian
distribution with temperature TM. Therefore, the electron
temperature in the upstream region never becomes exactly
TM, but slightly lower because there are always particles
which are not Maxwellized in several time steps. Even if we
significantly increase the rate of ‘Maxwellizing collisions’ the
only consequence will be the fact that the electron temperature
in the upstream region will be even closer to TM.

Here we impose as an external parameter the ‘Maxwelliz-
ing collision frequency’ νh(x, y). Once having the collision
frequency spatial distribution we use the null collision method
[16] to do the ‘collisions’. Obviously, these are not real colli-
sions but virtual collisions giving the electrons new velocities.
The procedure is done in this way to be compatible with the
rest of the Monte Carlo procedures.

The profile of the ‘Maxwellizing collision frequency’ is
taken to have a half-period sine shape, i.e.

νh(x, y) =
{

1 × 107 π
2 sin

(
π x−xa

xb−xa

)
, if x ∈ (xa, xb),

0, if x /∈ (xa, xb),
(A.1)

where xa = 5 × 10−3 m and xb = 3.333 × 10−2 m.
The particle injection is done in a similar way. We impose

as external parameters the ‘injection collision frequency’
νinj(x, y) with a similar profile:

νinj(x, y) =
{

νinj0
π
2 sin

(
π x−xa

xb−xa

)
, if x ∈ (xa, xb),

0, if x /∈ (xa, xb),
(A.2)

and certain ‘target density’ ninj. Here νinj0 = 7 × 105 s−1,
xa = 5 × 10−3 m and xb = 3.333 × 10−2 m. The change
in the electron (and ion) density due to injection is simply
dn/dt |injection = ninjνinj(x, y) and thus every time step we inject
a constant number of particles in the domain, regardless of the
real density of the different particle species. Both νinj(x, y)

and νh(x, y) are uniform along the ‘y’ direction.
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