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Abstract
In this study, we present a computational model of a cylindrical electric probe in atmospheric
pressure argon plasma. The plasma properties are varied in terms of density and electron
temperature. Furthermore, results for plasmas with Maxwellian and non-Maxwellian electron
energy distribution functions are also obtained and compared. The model is based on the fluid
description of plasma within the COMSOL software package. The results for the ion saturation
current are compared and show good agreement with existing analytical Langmuir probe
theories. A strong dependence between the ion saturation current and electron transport
properties was observed, and attributed to the effects of ambipolar diffusion.

Keywords: plasma diagnostics, electric probe, plasma modeling, argon plasma, atmospheric
pressure

1. Introduction

The electric plasma probe (Langmuir probe) is a well-known
diagnostics tool for a variety of low to high pressure thermal
and non-thermal plasmas, because of its simple means and
wide range of applicability. Over the last several decades, the
Langmuir probe has been used extensively as a diagnostic
tool for determining plasma parameters such as electron
density, ion density, electron temperature, and plasma
potential.

The probe itself consists of a small electrode (usually a
metal cylinder, a sphere, or a disk), typically biased in the
range from −50 to +50 V with respect to a much larger
reference electrode [1]. There are also double, triple, and
multi-probe configurations specialized for a variety of con-
ditions [2]. The data for the plasma parameters is extracted
from the current–voltage characteristic of the probe by
applying the appropriate theories and relations for the present
conditions [3, 4]. Conditions can vary by a vast degree: for
instance, plasmas can be in a low (10−9 to 10−3 bar), mod-
erate (10−2 bar), and high (1 atm. and above) pressure. The
electron and ion temperatures determine whether the plasma

is in thermal equilibrium (Te≈Ti) or is a low-temperature
non-equilibrium plasma (Te>Ti). Depending on the mean
free path for the ions, plasmas can also be collisional or non-
collisional, which will lead to different assumptions when
analyzing plasma sheaths. Furthermore, plasmas can be sub-
jected to gas flows or remain stationary. It is easy to see that
the number of possible combinations is very large, and
therefore the number of plasma probe theories is also very
large.

The progress on electric probes dates from 1926 with
Mott-Smith and Langmuir’s well-known work on low-pres-
sure plasmas [3]. Some very extensive literature on the sub-
ject is present [4]. Considerable progress has been made with
analytical and numerical models for a variety of probe and
plasma parameters at low, moderate, and atmospheric pres-
sure plasma. Low-pressure numerical models have been
developed [5, 6]. Other works review probes in flowing
plasma conditions at moderate to high pressures [7, 8]. A vast
amount of experimental and theoretical works belong to the
low-temperature plasmas [9–15]. Some recent investigations
were conducted for probes in low-temperature, atmospheric
microwave plasma [16, 17]. Plasmas employed in industry,
medicine, and scientific research typically fall into this cate-
gory. While the electric probe is often employed in plasma
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experiments, and the theoretical background behind it is very
extensive, challenges are still faced when combining different
electric probe theories with experimental data.

At atmospheric pressure, the mean free path of electrons
and ions is usually smaller than the probe diameter, which
results in a much stronger gradient of the plasma density near
the probe. On the other hand, the probe should be as thin as
possible (taking into account the limitations due to the ther-
mal conductivity of the wire); otherwise, it will introduce
various disturbances in the surrounding plasma, resulting in
inaccurate measurements. The cylindrical shape of the probe
also represents a difficulty in obtaining an analytical solution
for the probe current [1, 11, 14]. A number of plasma probe
theories have been developed in order to evaluate plasma
parameters (typically electron density and temperature) at
atmospheric pressure.

The calculation speed of modern computers permits the
development of a reliable numerical model for researchers to
use in electric probe experiments. The goal of this work is to
develop such a model, and benchmark one of the existing
analytical Langmuir probe theories at atmospheric pressure
against a more elaborate numerical model, including proper
description of the sheath around the probe.

Section 2 of the paper describes the model in detail,
including the system of equations, the reaction rate set and the
boundary conditions.

Section 3 describes the analytical probe theory chosen to
be benchmarked with the numerical model.

Section 4 is the results section, where the data for probe
current–voltage characteristic obtained from the model is
presented. The ion saturation current is taken under con-
sideration under different plasma densities and electron
temperatures.

The paper concludes with section 5, where some addi-
tional remarks on the model performance are added to the
discussion.

2. Model description

2.1. System of equations

The model is built using the Plasma module in COMSOL
Multiphysics [18]. This module offers the fluid description of
plasma through its DC Discharge interface. Fluid plasma
models are based on macroscopic quantities of particles like
densities, mean velocity, and mean energy for the plasma
species (i.e. electrons, ions, and excited species). Their
computational cost is significantly reduced compared to kin-
etic models. The fluid model used here is based on a set of
equations for the particle densities, defined within the drift-
diffusion approximation. Thus, the obtained results are only
an approximate description of the plasma, which is justified
by the complex nature of the task.

2.1.1. Particle balance equations. Under the drift-diffusion
approximation, the following equation is solved for the
particle balance of electrons, ions of different types, and

excited atoms:
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where ns stands for species density, Gs


stands for species flux,

and Sc is the production term, which represents the particles
produced or lost due to volume reactions. The electron flux
would be described as follows:
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stands for the electron flux; De and ne stand for the

electron diffusion and electron density, respectively; qe is the
electron electrical charge; em is the electron mobility; and E



represents the electric field. Then, the ion flux is as follows:
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where, by analogy, Gi

 
stands for the ion flux, Di stands for

ion diffusion, and ni for ion density. The use of the drift-
diffusion approximation for the ions (equation (3)) is justified
by the fact that for the considered conditions of atmospheric
pressure plasma, the inertial term in the ion momentum
balance equation remains several orders of magnitude
smaller, compared to the other most significant terms.
Finally, in the equation for the neutral species, the flux is
determined only by diffusion:

G D n . 4s s s= -
 

( ) ( )

The electron mobility coefficient is derived from BOLSIG+
[19] and the Ar+ mobility is defined as in [20]:
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The electron diffusion coefficients is derived from the
Einstein relation for plasmas with Maxwellian electron
energy distribution functions (EEDFs). For non-Maxwellian
distributions, the latter would not be correct (except if the
electron neutral collision frequency is assumed to be
constant), and the diffusion coefficient is obtained directly
from BOLSIG+. The diffusion coefficient for Ar 4s( ) is
defined according to [21]:
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The definition is the same for the diffusion coefficient of
Ar 4p .( ) The temperature of all heavy species is assumed to be
the same as the gas temperature Tg. In the above expression,
nAr stands for the density of argon atoms.

2.1.2. Poisson’s equation. The balance equations are
coupled with the Poisson equation for calculating the
electric field in the model

, 7
0

j
r
e
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where j is the electric potential, r is the electric charge
density, and 0e is the dielectric permittivity of free space.

2.2. Plasma kinetics

Argon gas is considered in the model, as this is one of the
most often used gases in plasma technologies. The electron
impact reactions, chemistry kinetics, and surface impact
reactions are reduced only to the most significant ones. The
species considered in the model are electrons (e), atomic ions
(Ar+), and two species representing lumped excited states of
the 4s and 4p blocks (Ar(4s), Ar(4p)). The argon atom density
is assumed to be constant and it is derived from the ideal gas
law based on the pressure (pAr) and gas temperature (Tg), i.e.
low ionization degree is assumed. Electron–electron colli-
sions are not considered in the model. The electron collision
processes are given in table 1, while the heavy species pro-
cesses are summarized in table 2.

In addition to the reactions within the plasma volume,
certain surface reactions need to be implemented in the
model. When an excited particle hits a boundary, it will revert
to its ground state, while the ions will be neutralized and also
converted to atoms. These reactions are presented in table 3.
The sticking coefficient values of these reactions are usually
considered to be close to 1, and were assumed in the model to
be exactly equal to 1 in the boundary condition expressions in

table 5. The boundary area to which they apply are the sur-
rounding ground electrode and the probe surface.

As probably noted by the reader, the electron energy
balance equation is missing in the list of equations used in the
model. While we can include it without much effort, its use
will limit our study to an electron temperature value obtained
from the solution. Since our aim is to derive the probe cur-
rent–voltage characteristics at various conditions, we inten-
tionally drop this electron balance equation and set Te as an
external parameter in the range of interest between 1 and
3 eV. Imposing Te means that the model is not self-consistent
and we cannot properly close the system of equations. If we
consider all reactions in tables 1 and 2, setting Te will lead to
a lack of steady state solution—the density will either rises
enormously or the plasma will vanish and the density will go
to zero. In order to stabilize the model and permit the

Table 1. Electron collision processes included in the model.

Reaction Rate coefficient Reference

(R1) e Ar e Ar+  + BS [22]
(R2) e Ar e Ar 4s+  + ( ) BS, LP [22]
(R3) e Ar e Ar 4p+  + ( ) BS, LP [22]
(R4) e Ar e e Ar+  + + + BS, LP [22]
(R5) e Ar 4s e Ar 4p+  +( ) ( ) BS [23]
(R6) e Ar 4s e e Ar+  + + +( ) BS [24]
(R7) e Ar 4p e e Ar+  + + +( ) BS [24]
(R8) e Ar 4s e Ar+  +( ) BS [22]
(R9) e Ar 4p e Ar+  +( ) BS [22]
(R10) e Ar 4p e Ar 4s+  +( ) ( ) BS [23]
(R11) e e Ar Ar e+ +  ++ k T8.75 10 eVm s

39
e

4.5
6 1 = ´ - -

- ( )( ) [25]
(R12) Ar e Ar Ar Ar+ +  ++ k T K1.5 10 300m s

40
g

2.56 1 = ´ - -- ( ( ) )( ) / [26]

BS: Boltzmann solver. The rate coefficients are calculated from the corresponding cross sections,
based on solution of the Boltzmann equation with BOLSIG+ [19].
LP—limited production. The collision rate r is calculated using constant (nec) electron density (i.e.

r kn nec Ar= instead of i.e. r kn ne Ar= ), where nec is a constant parameter and nAr is the density of the
argon atoms.

Table 2. Heavy species collisions and radiative transitions included in the model.

Reaction Rate coefficient Reference

(R13) Ar 4s Ar 4s e Ar Ar+  + + +( ) ( ) k T K1.62 10 300m s
16

g
1 23 1 = ´ -- ( ( ) )( ) / / [27]

(R14) Ar 4p Ar 4s( ) ( ) k 4.4 101 s
71 = ´-( ) [27]

(R15) Ar 4s Ar( ) g 10eff
8p´ ´ [27]

(R16) Ar 4s Ar 4p e Ar Ar+  + ++( ) ( ) k T K1.62 10 300m s
16

g
1 23 1 = ´ -- ( ( ) )( ) / / [27]

(R17) Ar 4p Ar 4p e Ar Ar+  + ++( ) ( ) k T K1.62 10 300m s
16

g
1 23 1 = ´ -- ( ( ) )( ) / / [27]

(R18) Ar 4p Ar Ar 4s Ar+  +( ) ( ) k 5 10m s
183 1 = ´ --( ) [28]

geff =characteristic unit [29].

Table 3. Surface impact reactions assumed in the model.

Reaction Sticking coefficient

(R19) Ar Ar+ 1
(R20) Ar 4s Ar( ) 1
(R21) Ar 4p Ar( ) 1

Surface reactions: reactions at model boundaries
—plasma walls and plasma probe.
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derivation of the steady state solution, the production of
species is controlled (limited) by controlling the ionization
processes and the production of excited species contributing
by stepwise ionization. This is done by modifying the col-
lision rates (r) of these processes by using constant electron
density nec( ) for their calculation r kn nec Ar=( ) instead of the
electron density variable itself r kn ne Ar=( ). Note also that a
constant value is added to the direct ionization process (R4) in
order to have charged particle production even at low electron
temperatures, where the ionization rate coefficient calculated
with BOLSIG+ is very small.

Another important characteristic of the used model is the
lack of molecular ions in the argon chemistry. Often, at
intermediate and high pressure discharges, the molecular ions
are significant in number and play an important role mainly
due to the recombination process. In this work, the molecular
ions were intentionally excluded in order to allow a more
consistent comparison with the analytical expressions. Pre-
liminary results show that the molecular ions indeed sig-
nificantly change the obtained probe characteristic, and one
should keep this in mind depending on the discharge
conditions.

We would like to stress that not all reactions from the
considered set are important for the considered conditions and
some of them could certainly be removed. However, we keep
all of them in order to preserve the generality of the model
and its validity in a wider range of discharge conditions
(electron density, gas temperature, electron temperature,
pressure, etc). Thus, this model should not be considered as
an example of chemistry needed for proper description of the
considered conditions but only as a source of proper results
for the given conditions, despite the fact that some reactions
and species might be unnecessary (redundant).

2.3. Electron energy distribution function (EEDF)

The model is computed for two different EEDFs. One is a
classical Maxwellian distribution, and the other is a non-
Maxwellian—the one computed with the Boltzmann solver

BOLSIG+ [19]. These distributions are given in figure 1. The
non-Maxwellian electron energy distributions derived from
BOLSIG+ have a different shape for the different averaged
energy values, which are derived by assuming a different
electric field. The gas temperature is assumed to be 1600 K, in
accordance to experiments in [16]. The value is approximate
and, in general, may vary considerably among the different
experiments and setups. However, atmospheric pressure dis-
charges usually tend to produce considerable gas heating
except in non-stationary/pulsed discharges like dielectric
barrier discharge (DBD) or gliding arcs. Therefore this value
is considered by us to be in the ‘typical’ range of gas temp-
erature values, without claiming completeness.

2.4. Model geometry and boundary conditions

The problem we consider is a cylindrical probe with a length
of 1 mm and radius of 0.05 mm, and both ends rounded with
hemispheres. The plasma region is closed in a sphere with a
radius of 10 mm, and it plays the role of a reference electrode.
It is also grounded. In order to reduce the computational time,
we take advantage of the symmetries present in the problem:
axial symmetry and symmetry with respect to the plane
crossing the probe in the middle. As a result, the simulation
domain reduces to the one presented in figures 2 and 3. In
figure 3, the ‘insulation’ boundary condition means zero
fluxes of the charged particles and zero gradient of the electric
field. As expected, the model requires a very fine finite ele-
ment size at plasma sheath areas, typically in the order of
2 μm and smaller. Furthermore, boundary mesh layers sur-
round the electrode surfaces, with sizes down to 20 nm in the
direction perpendicular to the probe surface (see figure 2).
The total number of mesh elements exceeds 50 000.

The bias voltage is applied at the probe boundary. The
voltage slowly increases through a time-dependant function.
The whole current–voltage characteristic is derived for a time
period of 20 s, which is large enough so that we can assume
that at every point of the current–voltage characteristic the

Figure 1. Electron energy, Maxwellian, and non-Maxwellian
distributions at Tg=1600 K. The non-Maxwellian EEDFs (dotted
lines) are obtained with BOLSIG+ and have the same averaged
energy (or Te) as the Maxwellian EEDFs (1, 2, and 3 eV). Mean
electron energy in eV.

Figure 2. Plot of the domain discretization used in the model. Finite
element size of less than 2 μm near the plasma probe surface is
required.

4
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plasma has reached a steady state. The outer boundary of the
sphere is set at zero potential as a ground electrode. Table 5
includes all boundary conditions used in the model. The
probe current is evaluated at each time step taken by the
solver by integrating current density over the probe surface.
The final result is a current–voltage characteristic for the
given conditions. The main model parameters are described in
table 4.

The boundary conditions (table 5) for the model are taken
from [29], with the according numbers for the expressions
given below. Using the same modeling techniques, these
expressions set the electrostatic conditions for the probe and
wall entities in the model. The boundary conditions governing
electron and field emission from [29] are not active in the
present model.

n


is the normal vector; in column ‘expression’ the
number in brackets gives the equation number in the
corresponding reference given on the left. In the axial sym-
metry boundary condition the letter ‘f’ represents the depen-

dent variables in equations (1)–(7). v th
k T

me,
8 B e

e
=

p
,

v th
k T

mi,
8 B i

i
=

p
. BC—Boundary Condition.

3. Probe theory

Results from the numerical model are compared with the
continuum analytical theory of electrostatic probes developed
by Su and Kiel [13]. The theory is essentially analogous to the
paper by Su and Lam [9] based on spherical probes, but it is

approximated for probes of cylindrical shapes. In this theory,

an elongated spheroid of the type 1x

a

y

b

z

c

2

2

2

2

2

2+ + = , where
c a> , is considered as the approximate analytical shape. The
electric current collection is considered over the entire probe.
The theory does not consider gas flow, as is the case in the
model presented here. It is only valid for electric Reynold’s
numbers below unity. Sometimes the effect of gas convection
around the probe can be significant, as demonstrated by other
theories [14].

Of course, we only consider the theory for ion saturation
current, as the electron saturation current is usually too dif-
ficult for use in practice. This probe theory only satisfies
plasmas with Maxwellian electron energy distribution and it
uses the Einstein relation for the electron and ion diffusion
coefficients. Thus, different results are expected both for ion
and electron currents if we use a non-Maxwellian EEDF.
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Expression (8) is formula 2.3 taken from [13], considering the
current-voltage characteristic over a finite cylinder (ellipsoid).
In the formula, Iis is the ion saturation current, ne is the plasma
electron density, L is the electric probe length, r is the probe
radius, k is the Boltzmann constant, Te is the electron temp-
erature in Kelvins, Ti is the ion temperature in Kelvins, and im
is the ion mobility.

4. Results and discussion

4.1. Debye sheath and current–voltage characteristic

The Debye sheath at the probe boundary is evaluated by
comparing the electron and ion density. Normally, Debye
sheaths would form on boundary areas in plasmas due to the
significant difference in thermal velocity and weight for ions
and electrons. Normally, this sheath would be several Debye
lengths thick. Figure 4 presents the sheath structure for the
conditions noted in the figure caption. Plasma densities in the
other figures apply only for the areas of unperturbed plasma.

The model was tested at several plasma densities and
electron temperatures. The current–voltage characteristic
(figure 5) of the plasma probe of the model is within expected
values and shows the characteristic properties described in
plasma probe theory, such as plasma potential ‘knee’ and
electron saturation current. The electron density ne noted in
the figure caption is the electron density in the unperturbed
plasma.

4.2. Ion saturation current at different electron temperatures

The model is computed iteratively for different plasma den-
sities and electron temperatures. At each completed compu-
tation, the values for the ion saturation current are taken at a
probe voltage of −20 V, away from the floating potential,
which is usually around 3–5 V. For the same density values

Figure 3. Domain description and some of the boundary conditions.

Table 4. Model parameters.

Entity Value Unit

Probe length 1 mm
Probe radius 0.05 mm
Plasma density 1017∼1022 m−3

Electron temperature 1∼3 eV
Pressure 1 atm
Probe bias −50∼+50 V
Ion and gas temperature 1600 K

5
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(figures 6–8) the ion saturation current is calculated based on
the theoretical formula from section 3.

Figure 9 summarizes in detail the results presented in
figures 6–8. A repetitive trend can be observed between the
three different settings for electron temperature. At low

Table 5. Boundary conditions.

Boundary Expression Equation Description

Probe 0j j= 7 Voltage
Ground electrode 0j = 7 Voltage
Probe/Ground electrode n G

v n q

q
n E n

4
th

i
i, i i

i
i im⋅ = + ⋅

    
∣ ∣

1 (ni) BC electrode

Probe/Ground electrode n G
v n

2
th

e
e, e⋅ =

  
1 (ne) BC electrode

Probe/Ground electrode n G
v n

4
th

s
s, s⋅ =

 
1 (nAr(4p), nAr(4s)) BC electrode

Axial symmetry f r 0r 0¶ ¶ ==∣ 1–7 Axial symmetry
Insulation n G 0s⋅ =

 
1 No flux

Insulation n D 0⋅ =


7 Zero electric field

Figure 4. Electron and ion density over distance from probe
boundary at floating potential. n 1 10 mec

19 3= ´ - ,
n 1.98 10 me

20 3= ´ - , T 1 eVe = . Maxwellian EEDF.

Figure 5. Current–voltage characteristic derived from the model at
the following parameters: n 4.5 10 me

19 3= ´ - , T 1 eVe = , and
n 1 10 mec

19 3= ´ - . Maxwellian EEDF. Note the different scale for
the probe current axis below the zero point.

Figure 6. Ion saturation current at different plasma densities,
Te=1 eV. Maxwellian EEDF.

Figure 7. Ion saturation current at different plasma densities,
Te=2 eV. Maxwellian EEDF.
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plasma densities, around 1018 and 1019 m−3, a very good
agreement between the model and the theory is present, with a
difference of less than 20%. Further into higher densities, the
accuracy worsens, reaching 40%. This might be due to the
high plasma density and resulting thin sheath areas. However,
the behavior is clearly not linear (figure 9), and other factors
such as computational solvers, species density artefacts, and
time stepping settings can contribute to the total model acc-
uracy. Improving mesh quality (by a factor of two) at the
boundary areas gives little to no benefit. At very high plasma
densities, we see a difference ranging from 2% to 50%, which
is probably due to the geometric approximations of the the-
ory. The expression given by Su and Kiel considers a long

ellipsoid, which can only resemble but not fully describe the
cylindrical probe. In the model, we use a cylinder with a
rounded top (see figure 2). The shape of the probe directly
affects the electric field surrounding it, yielding different
electron and ion current collection. Overall, the analytical
theory by Su and Kiel demonstrates a satisfactory agreement
with the results obtained from the computational model.
Generally, its deviation is less at lower plasma densities
(figure 9).

4.3. Derivation of the electron temperature from the electron
retardation current

In practice, when using electric probes the electron temper-
ature is usually unknown and is derived from the slope of the
natural logarithms of the electron retardation current plotted
as a function of the probe voltage (at low pressure, one could
also derive the EEDF and integrate it to obtain the average
electron energy). Here we test this approach by deriving Te
from the numerically obtained probe characteristics with
known electron temperature of the undisturbed plasma.

In figure 10, the logarithm of the electron current (Ie) is
plotted, and part of these curves (figure 11) are used for the
derivation of Te (the obtained values noted in the legend) from
their slope. Correspondence with the input values (1, 2, and
3 eV) is very good, compared to the obtained values of 1.19 ,
2.22, and 3.03 eV, respectively.

4.4. Ion saturation current at different EEDFs

In this subsection, we show numerical results derived with
different EEDFs—Maxwellian and non-Maxwellian
(obtained with BOLSIG+). Apart from the EEDF itself, the
model with a Maxwellian distribution uses the Einstein rela-
tion between the electron mobility and diffusion coefficient,

Figure 8. Ion saturation current at different plasma densities,
Te=3 eV. Maxwellian EEDF.

Figure 9. Deviation (in %) of the obtained plasma density based on
the analytical model (equation (8)) over the present computational
model.

Figure 10. Natural logarithm of electron retardation. Graphs for 1, 2,
and 3 eV are shown for Maxwellian EEDFs. The corresponding
electron densities in the simulations are ne=1.99×1020 m−3

(Te=1 eV), ne=4.02×1019 m−3 (Te=2 eV), and
ne=4.15×1019 m−3 (Te=3 eV).
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while the non-Maxwellian model relies on the electron dif-
fusion coefficients obtained directly from BOLSIG+. As a
result, in figure 12, a pronounced deviation of the ion satur-
ation current at different plasma densities can be seen. There
is a strong deviation in the electron saturation region as well
(figure 13), of over 200%. The plasma potential also changes
significantly from 13 V at Maxwellian EEDF to 31 V for the
non-Maxwellian case. This can be explained by a number of
factors. In the non-Maxwellian models, the electron transport
properties differ significantly, i.e. the electron diffusion
coefficient is slightly lower (3.58 for non-Maxwellian versus
4.39 m2 s−1 for the Maxwellian), but the electron mobility
differs significantly (1.40 for non-Maxwellian versus
4.39 m2 V−1s for Maxwellian). The ion transport properties
remain the same (diffusion: 1.22×10−4 m2 s−1; mobility
specification: 8.88×10−4 m2 V−1s). The increase of the
plasma potential for the non-Maxwellian case could be related
to the increase of the ambipolar electric field, which can be

expressed approximately as [30]:

E
D n

n
. 9amb

e

e

e

em
~

 ( )

At non-Maxwellian EEDF the ratio De em increases sig-
nificantly (2.56 times) which results in an increase of the
plasma potential in the domain of around 2.4 times (31 V/
13 V). The electron saturation current is directly determined
by the electron mobility, as can be seen by equation 2.4
in [13].

With respect to the ion saturation current, the picture is a
bit more complicated. According to equation (8), in the limit
of low ion temperature, the ion saturation current is propor-
tional to μiTe. One can speculate that this can be considered as
an approximation (assuming low ion diffusivity) of the
ambipolar diffusion coefficient ([30], page 136]). The ambi-
polar diffusion (Da) coefficient increases in the non-Max-
wellian model: Da (Maxwellian)=1.01×10−3, while Da

(non-Maxwellian)=2.39×10−3. The above increase of
2.39 times corresponds very well to the increase of the ion
saturation current in the non-Maxwellian case—2.3 times. It
is also worth noting that it has been shown in the literature
that the ion saturation current and the ambipolar potential in
low-pressure plasmas with non-Maxwellian EEDF are
defined by an effective electron temperature, which is called
the electron screening temperature Tes. It is determined
mainly by the low energy part of the EEDF [31, 32] and could
be approximately derived by the ratio De em [33]. This
effective (screening) temperature actually replaces Te in
equation (8), and since in our case it is considerably higher
(around 2.3 eV) it also determines the ion saturation increase
with respect to the Maxwellian case. However, the above
discussion and conclusions include some speculative ele-
ments and can be confirmed only after thorough analytical
and numerical analysis, which will be done in a future
contribution.

Figure 11. Parts of the curves shown in figure 12, used for the
derivation of the electron temperature.

Figure 12. Ion saturation current at different densities, Maxwellian
and non-Maxwellian EEDFs. Te=1 eV, probe voltage = −20 V.

Figure 13. Results for electron current at retarding and saturation
regions of the current–voltage characteristic. ne=9.7×1018 m−3,
Te=1 eV.
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Furthermore, the ion saturation current is determined
primarily by the transport characteristics, and the ionization in
the probe sheath is negligible. Indeed, this is confirmed by
examination of charged particle production in the sheath,
which was found to be very small compared to the particle
fluxes from the undisturbed plasma. It is also worth men-
tioning that numerical tests show that if we change the elec-
tron mobility and diffusion coefficient in both models to
values from the other model, we obtain the ion saturation
current corresponding to the values of the other model, from
which μe and De has been taken. That is, if we change μe and
De in the Maxwellian model to μe and De from the non-
Maxwellian, we obtain an ion saturation current equal to that
of the non-Maxwellian model, and vice versa.

5. Conclusion

The current–voltage characteristic of the simulated probe
shows the typical behavior of a probe for the considered
conditions. For plasma with a Maxwellian EEDF, the agree-
ment between the probe theory derived in [13] and the
numerical model is very reasonable. This is not surprising as
the model uses the drift-diffusion approximation, and ioniz-
ation seems to play a minor role in the probe sheath.

The effect of probe geometry can lead to a significant
difference between the methods, since the computational
model uses a thin cylinder opposed to the ellipsoid approx-
imation used in the analytical model [13]. Thus, a different
distribution of the electric field can be expected, resulting in a
difference in the probe current. This effect can be seen in the
numerical model, where the electric field magnitude has a
peak at the probe tip, with a value two times higher than the
rest of its surface. Moreover, the total probe surface can
slightly differ between the analytical expression and geometry
in the model. The trends show that the analytical theory is
between 10% and 50% away from the numerical model,
which is acceptable for most practical situations. The accur-
acy of actual low-temperature plasma measurements rarely
exceeds this margin. Overall, the numerical model presented
here is very versatile, as it covers six magnitudes of plasma
density and electron temperatures between 1 and 3 eV, with
the possibility for further extension.

The influence of the EEDF on the results is examined. In
the given range of plasma densities, the ion saturation current
is affected by the particular non-Maxwellian EEDF, showing
higher values (figure 12). For the considered conditions of
argon gas and gas pressure (atmospheric), using a non-Max-
wellian EEDF largely changes the electron mobility coeffi-
cient, which leads to a significant difference in final results.
This confirms that the theory in [13] is only applicable for a
limited range of conditions favouring a Maxwellian energy
distribution. Moreover, numerical tests show that since the
ionization processes in the probe sheath play minor role, if
one uses the correct values of the transport properties
(mobility and different coefficients), regardless of the EEDF,
the analytical expressions are still reliable enough; however,
we cannot claim that this is true in general since this was

verified only for limited range of conditions and further
analysis is needed. The ion saturation current and the ambi-
polar potential seems to be defined by an effective electron
temperature that replaces the electron temperature in
equation (8).

There is a very pronounced deviation in the electron
current saturation region as well. Analogically, this is prob-
ably related to the different electron mobility.

The comparison of the input electron temperature and the
obtained value from the probe is a valuable addition
(figure 11), showing a good agreement between model inputs
and computational results.

The simplifications taken on the plasma chemical com-
position are not to be neglected. In high-pressure argon dis-
charges, additional species like molecular ions may play a
considerable role. Thus, they should be accounted for if more
accurate derivation of the ion density is required. In this work,
this was omitted in order to provide a more consistent com-
parison with the analytical expression (8). This is another
point of interest for model accuracy, which is outside the
scope of this work.

The gas flow and probe thermal balance are not con-
sidered in the model, which might be a strong simplification.
In most experiments, the plasma is produced in a flowing gas.
The convection of the gas around the probe, depending on the
electric Reynolds number, might cause a significant pertur-
bation in results [14]. The probe thermal balance may influ-
ence the plasma by cooling the plasma around it, affecting
species mobility and density [1]. However, at this stage, such
considerations would complicate the model beyond usability.

As for computational performance, on a workstation
equipped with an i7-3820 CPU (4 cores at 3.7 GHz) and
64 GB of RAM, the model computes within 60 min. Of
course, numerous iterations are needed for accurate fitting
with experimental data.
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