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Anopearna Awnopeesa, Mapuna Byposa. UMITYJICHO VIITPASBBYKOBO M3OBPA-
34BAHE YPE3 KOHBOJIIOLIMA HA ®YPUE-TPAHCOOPMAILIMWUTE HA TTPEMUHA-
JINTE MPE3 TIOA®OPMUTE, U3TI'PAXIAILLIN OBEKTA, AKYCTUYHU ITOJIETA

OOEKT e 0CBeTEH C KbCH aKyCTHYHU UMITYJICH. AMIUTUTYIUTE Ha MIPEMHHAIUTE TIpe3 OT-
JICITHUTE €JIEMEHTH (TIPOCTH MOA(GOPMH, U3TpaxkIaIly 00eKTa) aKyCTUYHN UMITYJICH Ca PETHCT-
pHpaHu upe3 CKaHHUpaHe C yITPa3ByKOB Mpeodpasysarer. [IpeMuHanuTe npe3 OTACIHUTE elie-
MEHTH aKyCTHYHH UMITYJICH Ca Pa3/ielieHH BbB BPEMETO MOPaIH Pa3iuKaTa B U3MHHATHS ITBT.
Dypue-TpanchopMaiys BbpXy MOpeauraTa ot Hu(poBH CTOMHOCTTH 32 BCAKO aMILTUTYIHO
nose (MpeMUHAINTE aKyCTHYHU MMITYJCH Mpe3 ChOTBETHATa MoA(popMa) € H3MbIHEHa upe3
KOMITIOTBpHa mporpama. dypue-Tpanchopmanunre npeacrasisBar Pypue-odpasu Ha OT/e-
sHUTe poctu hopmu. [TpodurbT Ha HAUTHKHOTO CEUCHHE HA U3CIICABAHUS OOCKT € PEKOHC-
TpyupaH Bb3 OCHOBA Ha TeopeMaTa 3a KOHBOJMOIMATAa. OOpa3bT € moiydeH upe3 obparHara
TpaHchopmanusi Ha KOHBOJOIMATA Ha oTnenHute Pypue-tpanchopmanuu. [lokazano e, 4ye
PEKOHCTPYKIMATA HE 3aBUCU OT OPOsi HA MPOCTHUTE MOA(GOPMHU, H3rPaXKAAIIH 00SKTA.

Andreana Andreeva, Marina Burova. PULSED ULTRASONIC IMAGING BY CONVO-
LUTION OF THE FOURIER TRANSFORMS OF TRANSMITTED THROUGH ELEMEN-
TARY SUB-OBJECTS ACOUSTIC FIELDS

An object is illuminated with short acoustic pulses. The amplitudes of the transmitted
through the separated elements (simple forms, constructing the object) acoustic pulses are reg-
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istered by a scanning with ultrasonic transducer. The transmitted acoustic pulses through the
simple forms are separated in time because of the path difference. The Fourier transformation
of the digital data of each amplitude field (the transmitted acoustic pulses through the corre-
sponding form) is performed by a computer program. The Fourier transformations represent
Fourier images of the separated simple forms. The profile of the object longitudinal section is
reconstructed on the basis of the convolution. The image profile is obtained from the reverse
transformation of the convolution of the Fourier transformations. It is shown that image recon-
struction is independent of the number of the simple forms.

Keywords: Fourier transformation, convolution, deconvolution, ultrasonic imaging, re-
verse transformation
PACS numbers: 43.35.Sx

1. INTRODUCTION

The illuminating of an object by short acoustic pulses and the registration
of the transmitted (diffracted) fields in digital form with following computer
processing, is the base of the ultrasonic imaging. The different mathematical
models are used for digital processing of the registered amplitude fields with
purpose of object imaging.

One approach used in the ultrasound tomography for image reconstruc-
tion, is based on the Fourier transformation theorem of the object section. The
theorem relates the Fourier transform of a projection to the Fourier transform
of the object along a radial line. The Fourier transform of a parallel projection
of an image f(x,y) taken at angle 0 gives a slice of the two-dimensional trans-
form F(u,v) (subtending an angle 6 with the u-axis along) of the object a line
rotated by 0. If an infinite number of projections are taken, then F(u,v) would
be known at all points in the uv-plane and the object function f{x,y) can be
recovered by using the inverse Fourier transform [1].

The other approach is based on the Abbe theory. According to this theory,
the diffraction spots in the back focal plane act as point sources of second-
ary wavelets in the sense of Huygens. These arrive at the image plane and
interfere constructively to create the image. Therefore a Fourier series of the
studied object in spatial frequencies may be realized, if the each harmonic in
the Fourier transformation (obtained by using a lens or by computer program)
is multiplied by a term, giving angle distribution of the corresponding spatial
frequency. The object image can be obtained after summing up in all spatial
frequencies [2, 3]. The method is practically effective when the wavelength is
of the same order of magnitude as the object dimensions. The reconstruction
of the image depends on the discretization step of the interval at the summing
up. The correct reconstruction is when the discretization step is equal to the
step of sampling in the data plane.
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Because the object is composed from elements with different thickness
(a set of simple forms), a series of echo-signals is observed in the transmit-
ted (diffracted) field. Each echo-signal corresponds to transmitting of acoustic
pulse through some simple form.

The profile of each simple form can be reconstructed, using the mentioned
above algorithm for processing of the registered amplitude field (a Fourier
transformation of the data and summing up in all spatial frequencies — reverse
transformation) [2, 3]. In [3] the reconstruction of one-dimensional profile of
the longitudinal section of the object is obtained by an assembling of the both
simple forms [3]. The assembling is more difficult process if the object is com-
posed from more simple forms.

Fourier transformation must be applied for each data array, because the
amplitude field of each pulse is registered in corresponding time domain for
every scanning point. The Fourier image of the object will be “mapping” of
the Fourier transformation of the separate simple forms. The “mapping” can
be expressed mathematically as a convolution of the Fourier transformations
of the separated forms.

The reverse operation deconvolution is used to improve the resolution of
ultrasound images as the blurring caused by the ultrasonic system is removed
[4]. Spiking deconvolution and blind deconvolution with different parameters
is used to build inverse filters of the ultrasound pulse. Applying the inverse
filters to the measured results in sharper signals that are used for image recon-
struction [5].

A convolution procedure for improving the lateral resolution of ultrasonic
images is proposed, as the starting point is the approximation of the sound-
beam profile by model functions that arise from the convolution of rectangular
functions of varying width [6].

In [7] the two-dimensional images of the local values of ultrasonic wave’s
propagation velocity in the phantom’s internal structure (ultrasonic tomo-
grams) are reconstructed by using the convolution and back-projection algo-
rithm from the measurements of average values of ultrasonic signals’ runtime
propagated from many directions around the object dipped in water.

The reconstruction of the object image by a convolution of the Fourier
transformations of the registered amplitude fields (transmitted through the ob-
ject forms with different thickness) is the purpose of the present paper. The
pulses passed through forms with different thickness are registered separately
at each point of scanning. According to the convolution theorem and the use
for prediction of the diffraction pattern from complicated grating, the Fou-
rier object image is “mapping” of the Fourier transformations of the separate
simple forms.
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2. THEORY

One of the most important concepts in the Fourier theory is that of a con-
volution. Mathematically, a convolution is defined as the integral over all space
of one function at x times another function at u-x. The integration is taken over
the variable x (which may be a 1D or 3D variable), typically from minus infin-
ity to infinity over all the dimensions. So the convolution is a function of a new
variable u, as shown in the following equations. The cross in a circle is used to
indicate the convolution operation

C(u) =/ (x®)g(x)= [ F(x)g(u-x)ds=

space

g@® f(x)= [ g(x)f (u—x)dx

space

(1

As it seems from eq. (1) it doesn’t matter which function you take first, i.e.
the convolution operation is commutative:

Sx) ® g(x) = g(x) ® fix). 2

The convolution theorem has two statements:
1. The Fourier transform of the convolution of two functions is equal to
the product of their separate Fourier transforms:

Ff®g) = F(NFQ). 3)

2. The Fourier transform of the product of two functions is equal to the
convolution of their separate Fourier transforms:

F(fg) = F(f) ® F(g). 4)

In the analysis of the diffraction experiments, the convolution theorem is
very useful. It allows diffraction patterns from complex objects to be explained
in terms of the convolution and multiplication of simple object functions with
simple diffraction patterns.

According to eq. (4), the Fourier transformation of the product (the object,
composed from simple forms) is a convolution of the Fourier transformation
of the functions, describing the simple objects. The convolution operator in-
volves “mapping”of the function F(g) into the function F(f) or the function
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F(f) into F(g). This is in the case, when the complex object is composed from
two simple forms. When the object is composed from more forms, for example
from three, it can be shown the Fourier transformation of the object image is
the reverse transformation of the convolution of the Fourier transformation of
the separate object forms. If the functions, describing the objects forms are
f, g and w, using eq.(4) we may obtain the Fourier transformation F1 of the
product of (f2).

Fl(fg) = F(f) ® F(g). )

If convolution is realized between the right part of the eq. (5) with Fourier
transformation of the function w, i.e. F(w), the Fourier transformation of the
product may be written as follow:

F2(fgw) = F(f) ® F(g) ® F(w). (6)

Therefore the object image is the reverse transformation of the convolu-
tion of the Fourier transformations of the functions, describing of the simple
forms, composing the object. The convolution operation in (6) is commutative,
it does not matter the function sequence in the right part. The eq. (6) remains
valid in the case when the object is composed from more simple forms.

The registered amplitude fields will present functions time-shifted each to
other, when the acoustic pulse is passed though the object composed from sim-
ple forms with different thickness. The obtaining of object image is easy calcu-
lating Fourier transforms of the time-shifted functions and multiplication.

3. EXPERIMENTAL SET-UP

The experimental setup for registration of the amplitudes of transmitted
fields is shown in Fig. 1. A longitudinal section and 3D visualization of the
studied object are shown in Fig. 2 and Fig. 3 correspondingly.

The electric pulse passes from the amplifier by coaxial cable to the ul-
trasonic transducer (the diametrical size is 2 cm), which radiates an acous-
tic pulse. The transducer is located in a glass ripple tank, which is full of
water. It radiates in the water acoustic pulse with compression polari-
zation of the wave. A back flat surface of the object (composed from
three simple forms) is set parallel to the radiated transducer. The ultra-
sonic pulse is incident on the object’s surface at the normal. The ampli-
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Fig. 3. 3D visualization of the studied object

tude of the transmitted signal is also registered by the receiving transducer.
The registered pulses are observed on the digital oscilloscope Tektronix 11201.
The signal is digitized (with 10240 point of sampling) and it is averaged with
a digital filter to improve the ratio signal/noise. The receiving transducer is by
the computer controlled two-dimensional coordinate table moved. The step of
the movement of the transducer is 0.3 mm. A blend of 1 mm x 1 mm is placed
on the receiving transducer in order to register the amplitude of the transmitted
field at each step of moving. Three acoustic pulses separated in time domains
are observed for every step of moving. The amplitude of every echo-signal in
corresponding time domain is measured and saved for each point of scanning
(or in each element of the acoustic array or matrix). The time domains (left and
right limits for a measurement of the separate pulse) are defined automatically
by MatLab program, which controlls the digital oscilloscope.

The pulse duration in every time domain (containing a transmitted pulse)
is controlled by oscilloscope measurement function “delay”. In this way a
overlapping between the pulses may be avoided. By the interface RS232 each
registered amplitude value is translated to PC. Three sets of data, i.e. three
separate files of the amplitude values of the transmitted through the object
components field are obtained.

The transmitted amplitude acoustic fields are registered with 130 points at
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the scaning step 0.3 mm and at distances between the object and the data plane
z = 60 mm.

In accordance with Nyquist’s sampling criterion, for distinct images, it
must sample the wave front at least twice in the shortest spatial wavelength in
the wave front. Since the shortest possible spatial wavelength in the aperture is
A, the sampling step A/2 is adequate (or an array or matrix of elements spaced
by A/2). In our case wavelength A is 1.3636 mm.

The Function generator type ROHDE & SCHWARZ AFG generates RF
signal (sine burst) with the following parameters: frequency /= 1.1MHz, rise
time ¢ = 159.6 ns, fall time = 168.2 ns, output level U = 1V, phase offset 0°,
interval between the pulses 7 = 10 ms, number of the sinusoids N = 2. The
continuance of the pulse is 1.82 us.

The amplifier type ENI has the following characteristics: frequency range
150 kHz — 300 MHz, U™ =1V, P_. =10 W.

max

4. DISCUSSION

The obtained in digital form amplitude fields transmitted through three
separate simple forms are saved in three files and they are processed by Mat-
Lab function “smooth”. Each amplitude field is sampled with 130 points. The
amplitude field transmitted through the thickest segment is function “f” in eq.
(6), the function “g” is the amplitude field transmitted through middle part
and the function “w” through thinnest one. The Fourier transformation of the
digital data for each file is performed by MatLab program. The realization of
eg. (6) is made by MatLab convolution function. As it is mentioned above the
convolution operation in (6) is commutative, it does not matter the function
sequence in the right part. The inverse transformation of the convolution be-
tween convolution F(f) and F(g) is shown in Fig. 4.

The inverse transformation of the convolution between F(f) and F(w), and
between F(g) and F(w) are shown in Fig. 5 and Fig. 6 correspondingly. The
longitudinal section of the studied object is shown in Fig. 7 as inverse transfor-
mation of the convolution between F(f), F(g) and F(w). The reverse transfor-
mation is performed with 130 points. The 3D visualization of the object (ob-
tained from the one-dimensional profile in Fig. 7 by spherical coordinates) is
shown in Fig. 8. As it is seems from Fig. 7 the convolution function “smooth”
the image additionally. For distinct image obtained by a convolution, the over-
lapping of the signals is not desirable. The presence of overlapping of the
transmitted pulses will lead to distortion of the image. Especially at an im-
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Fig. 4. The inverse transformation of the convolution between F(f) and F(g)
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Fig. 5. The inverse transformation of the convolution between F(f) and F(w)
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Fig. 6. The inverse transformation of the convolution between F(g) and F(w)
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Fig. 7. The reconstructed profile of the object longitudinal section by the inverse
transformation of the convolution between F(f), F(g) and F(w)



x10°

1.2

0.8
0.6

0.4

z, arbitrary units

0.2

-

0

-05

y, arbitrary units B x, arbitrary units

Fig. 8. 3D visualization of the object obtained from profile in Fig. 7

age of the objects, for which the sound velocity is high and the differences in
the object dimensions are small. In this case the used acoustic pulse must be
enough short, the data plane must be in the far field and to use liquids with low
acoustic velocities.

5. CONCLUSSION

When the object composed from simple forms is illuminated with short
acoustic pulses, it may be reconstructed using the second statement of the
convolution theorem. In this case the Fourier transformation of the object is
a convolution of the Fourier transformations of the transmitted through the
simple forms acoustic fields. The convolution of the Fourier transformations
of the fields is appropriate method for object imaging because of the fact that
the transmitted acoustic pulses in the each point of scanning are time-shifted.
If the transmitted field through the object is registered by acoustic matrix, the
matrix convolution and three-dimensional visualization of the object may be
realized easy.
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