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Виктор Атанасов. ПсевдоМагнитни Полета в Графен над 300 Т: 
Теоретичен Подход�

Експерименталното получаване на псевдомагнитни полета над 300 Т в наномехурчета 
от графен [2] представлява сериозно предизвикателство за настоящата теория, свързваща 
появата на калибровъчни потенциали от опън в кристалната решетка. Тук предлагаме 
теоретичен подход, в рамките на който магнитното поле може да се пресметне по-
точно. Основна характеристика на този подход е взимането под внимание на тримерната 
вълнова функция на носителите в графена, като динамиката е постепено ограничена върху 
повърхнината на графена. В резултат на това геометрично обусловено калибровъчно поле 
се появява в двумерното уравнение, описващо повърхнинната динамика. Магнитното поле, 
свързано с този калибровъчен геометрично породен потенциал, има стойностти, близки до 
експерименталните.

Victor Atanasov. Pseudo-Magnetic Fields in Graphene in Excess of 300 T: 
Theoretical Framework

The experimental demonstration of pseudo-magnetic fields exceeding 300 T in graphene [2] 
nanobubbles represents considerable challenge for the present theory connecting the emergence of 
gauge fields due to strain in the underlying lattice. Here we propose a theoretical framework within 
which the magnitude of the pseudo-magnetic fields can be computed more accurately. The basic 
feature of this framework is that the carriers in graphene are considered with their three dimensional 
wave function which is then gradually constrained to the graphene surface. In the process, a geo-
metrically induced gauge field emerges in the two dimensional equation for the surface dynamics. 
The computation of the magnetic field associated with this gauge potential reproduces the measured 
field strength.
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1. Introduction

The unrivalled flexibility and strength of graphene membranes [1] coupled 
with the large strain-induced fields observed just recently [2] suggest that strain 
engineering is a viable method for controlling the electronic properties of gra-
phene, even at room temperature.  The experimental demonstration of pseudo-
magnetic fields exceeding 300 T provides venue for the study of the electronic 
properties of condensed matter systems in extremely high magnetic fields.

Therefore, it is of utmost importance to have a theoretical framework for 
predicting these pseudo-magnetic fields in graphene.

A distortion of the graphene lattice creates large, nearly uniform pseudo-
magnetic fields and gives rise to a pseudo-quantum Hall effect [3]. This effect 
is unique to graphene because of its massless Dirac fermion-like band structure 
and particular lattice symmetry (C3v), see Fig. 1 and Fig. 2 for a quick notion of 
graphene’s lattice and band structure. 

Fig.1. The lattice of graphene is comprised of two interpenetrating triangular lattices A and B  
with lattice unit vectors a1 and a2. Right: The Brillouin zone where the Dirac cones are located,  

K and K’. The reciprocal lattice vectors are b1 and b2.

Elastic strain is expected to induce a shift in the Dirac point energy from local 
changes in the electron density, as well as to induce an effective vector potential 
that arises from changes in the electron-hopping amplitude between carbon atoms, 
as well as the changes in the interatomic spacing. This strain-induced gauge field 
can give rise to large pseudo–magnetic fields (Bs) for appropriately selected ge-
ometries of the applied strain [6]. In this case the charge carriers in graphene are 
expected to circulate as if under the influence of an applied out-of-plane magnetic 
field. It has been proposed that a modest strain field with triangular symmetry will 
give approximately uniform magnetic field Bs upward of tens of tesla  [3]. 
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Fig. 2. Left: The electronic energy structure of graphene as a function of quasi-momentum  
taking values in the Brillouin zone[11]:  E± = ± t[3 + f(k)]1/2 – t’ f(k),   where   

f(k) = 2cos(31/2kya) + 4cos(31/2kya /2) cos(3kxa /2). Here k = (kx, ky), t ≈ 2,8 eV,  t’ ≈ 0,1 eV   
and  a = 1,42 Ǻ. The plus sign applies to the upper (π) and the minus sign to the lower (π*) band. 
Right: The band structure zoomed in on one of the Dirac points, where E± = ±ћνF |k|. The Fermi 

velocity where νF is constant and the electron-hole symmetry is not broken if next-to-nearest 
neighbor hopping is neglected.

It is precisely this proposition which was tested in an experiment. Experimen-
tal spectroscopic measurements by scanning tunneling microscopy were obtained 
for highly strained nanobubbles that form when graphene is grown on a plati-
num (111) surface [2]. The nanobubbles exhibit Landau levels that form in the 
presence of strain-induced pseudo-magnetic fields greater than 350 T.  Strained 
graphene nanobubbles were created by in situ growth of sub-monolayer graphene 
films in ultrahigh vacuum on a clean Pt(111) surface. Individual nanobubbles of-
ten have a triangular shape. This reflects the lattice symmetry of the graphene and 
the underlying Pt surface, and is typically 4 to 10 nm across and 0,3 to 2 nm tall. 
Atomic-resolution imaging of the nanobubbles confirms the honeycomb structure 
of graphene, although the lattice is distorted because of the large strain occurring 
in these structures [2].

Unfortunately, the underlying theory behind the measurements of these 
extreme pseudo-magnetic fields in graphene nanobubbles [2] produces field 
strengths which deviate considerably from the observed ones. This suggests a 
possible problem with the understanding of the mechanism creating these fields 
in graphene. The predicted pseudo-magnetic field, depicted on Fig.3, arising from 
strain field was calculated following [3].  
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Fig. 3. Theoretical estimation [2] of the pseudo-magnetic field on a simulated nanobubble.  
Notice the simulated bubble is twice as small (curvatures are twice as big) and produces  

substantially weaker fields. This figure appears as fig.3A in [2].

According to [3–5] a two dimensional strain field uij(x,y) leads to a gauge 
field
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where b = ∂log(t)/∂log(a) relates the change in the hopping amplitude t  between 
nearest neighbour carbon atoms to bond length a; the x-axis is chosen along a zig-
zag direction of the graphene latice. This yields the pseudo-magnetic field
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The large deviation, not only quantitatively but also qualitatively, from the 
measured field strength, as seen from Fig.4, points to a serious problem in the un-
derstanding of the mechanism creating the pseudo-magnetic fields in graphene. 

Fig. 4. Experimental data is courtesy of [2]. This figure appears as fig. 3A in [2].

Even more disturbing is the result from the magnetic field estimation using 
the heuristic relation 
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for the flux per ripple in distorted graphene sheet [6], where β  and 

� 

a  appear in the 
previous formula, h is the height, l is the length and Φ0 is the quantum of flux. This 
formula applied for a nanobubble of l = 4 nm and h = 0,5 nm yields a Bs of order 
100 T. This result represents a deviation in excess of 250% from the measured 
field’s strength!  This by no means represents a trustworthy understanding of the 
mechanism creating the pseudomagnetic fields in graphene.

2. Paradigm Shift

Here we argue that a paradigm shift in the way we envision carrier dynam-
ics in graphene can produce the correct pseudo-magnetic fields, therefore a better 
understanding of the emerging property in graphene:

global topology/curvature → property → functionality relationship.

On one hand the starting point is the realization that graphene as a one- 
atom-thick membrane has carriers confined in a two dimensional space trapped 
in three dimensions. Furthermore the electrons are described by a massless rela-
tivistic equation. On the other hand the wavefunction of a quantum  particle is 
always three dimensional due to the Heisenberg uncertainty principle which for-
bids setting any of the coordinates to zero (this would lead to indefiniteness in 
the momentum).  In this way any two dimensional quantum motion would have 
an evanescent off-surface component of the wave function which can probe the 
two dimensional surface for curvature [7]. Indeed, the measured thickness of gra-
phene, therefore extent of the evanescent off-surface component of the wavefunc-
tion, of graphene is almost 3 times as large, that is 0,34 nm, as the carbon-carbon 
distance of 0,14 nm, let alone the pz-orbital. If the graphene sheet is curved, either 
intrinsically or extrinsically, then the carriers will at least be able to “feel” this 
curvature in the form of some effective mass or effective gauge field. 

In fact, the curvature of the sheets builds strain and from a microscopic point 
of view strain has been shown to modify the electronic structure [3–5]. When 
interatomic distances are modified due to strain in the underlying lattice caused 
by curvature, the periodicity is disrupted and the conditions for the application of 
Bloch theorem do not hold. 

Therefore, standard methods of solution fail to grasp the complexity of the 
rippling property of graphene. Effectively this means that one has to use a con-
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straining procedure which starts from three dimensions and gradually confines 
the quantum dynamics onto the surface. Note, for the Schrödinger equation the 
curvature induces an effective (Da Costa) potential [7] through a confining proce-
dure reducing the dimensionality of the quantum system. One question stands out: 
what is the corresponding potential for the relativistic case?  We have answered 
this question and illustrated it through graphene in [8]. In short, the effective po-
tential has a linear dependence on the Mean curvature M as opposed to M2 – K, 
where K is the Gaussian curvature, in the usual (or nonrelativistic) case.

This effect is studied by expanding around the two dimensional space of the 
graphene sheet for vanishingly small excursions in the third direction. Such a 
procedure is well known for the Schrödinger equation [7] and we have carried it 
out in the case of a relativistic equation in a previous work [8]. The idea behind 
this confinement is that an “external force” gradually compresses the quantum 
dynamics onto a surface. This force can very well be the Coulomb electrostatic in-
teraction, since as an electron leaves the surface of the sheet it disrupts the charge 
balance and an attractive “external force” appears confining the dynamics onto 
the surface. When the excursion in the normal to the surface direction becomes 
small enough one can take the limit (the normal to the surface coordinate goes to 
zero) and split the original 3+1 dimensional relativistic equation into 2+1 and 1+1 
dimensional equations. The 2+1 dimensional equation encodes the quantum dy-
namics onto the surface and the 1+1 dimensional equation describes the behavior 
of the “evanescent component”, that is the normal to the surface component of the 
wavefunction. In this way the Heisenberg principle is not violated since in the pro-
cess described above no setting-to-zero of any coordinate of a three dimensional 
wavefunction takes place. According to a derivation [8]:
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Here the g-matrices belong to the fundamental 2-representation, V⊥(q3) is the 
confining potential which depends on the normal to the surface coordinate q3;  
Da are the components of a two dimensional covariant derivative, m(q3) is a mass 
term and vF is the Fermi velocity in the material. 

Note that the off-surface dynamics in this heuristic model can be solved in 
the nonrelativistic limit since as soon as the electrons leave the surface of the 
graphene sheet the symmetry which precludes the mass is no longer valid. The 
governing quantum dynamics is separated into surface χT and off-surface com-
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ponents χN, where the off-surface “evanescent component” dynamics can be ap-
proximated with the wavefunction of a particle confined in a deep and narrow one 
dimensional potential well. For a detailed derivation and discussion refer to [8]. 
The magnitude of the geometric potential that comes from the confinement [8, 9] 
is

V v MF= 

and the vector potential that corresponds to this interaction is

A v M
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F
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,

where e = 1.6 ×10-19 C the charge of the electron, νF ≈ 110 ×106 m s-1 is the Fermi 
velocity in graphene suspended by a substrate [10],  c=299792458 m s-1 is the 
speed of light, ћ=1,055.10-34 J s is the Planck’s constant and M = 0,5(k1 + k2) is 
the mean curvature, that is the average of the two principle curvatures k1,2 of the 
surface. From the relation A = 0,5B × r valid in two dimensions we obtain  for 
the bump

B
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where r = |r| = r1 is the length of the radius vector from the axis of the bump to 
the periphery (1/r1 is one of the principle curvatures of the bump) and Aϕ is the 
angular component of the vector potential in polar coordinates.

The computation for the magnetic field in our framework yields
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where the radii of curvature of the bubble r1,2 are given in [nm]. 
This formula applied for a nanobubble of l = 4 nm and h = 0,5 nm, that is  

r1 = 0,5l = 2 nm and r2 = h yields a Bs of the order of Bs = 302 T, which is the cor-
rect order of magnitude! 

Unfortunately, the experimental data published in [2] is along one section 
of the graphene nanobubble. This is insufficient for determining the two radii of 
curvature of the bubble. Nevertheless, it is apparent that at the base of the bump, 
where it flattens out in a small expand one may expect small radii of curvature, 
that is large pseudo-magnetic fields. Indeed, the experiment shows magnetic field 
of the order of 550 T.  
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3. Conclusion

We have presented a simple, geometrically clear formula for a gauge poten-
tial capable of producing magnetic fields as observed in graphene nanobubbles. 
This gauge field emerges naturally in confining the quantum dynamics of gra-
phene’s electrons from the embedding space to the two dimensional surface. In 
this way one can compare different approaches towards explaining the origin of 
the pseudo-magnetic fields in graphene. In this paper, we have demonstrated a 
correct order of magnitude result, which is in favour of a paradigm shift in the 
perception of the long wavelength, low energy approximation to the relativistic 
dynamics of graphene’s electrons. 
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