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Румен Цеков. Нелинейно триене в квантовата механика

Ефектът на нелинейни сили на триене в квантовата механика е изследван посредством 
дисипативна квантова хидродинамика на Маделунг. Получено е ново термо-квантово 
дифузионно уравнение, което е решено за частния случай на квантово брауново движение 
с кубично триене. То е разширено още и чрез включване на химичен реакционен член за 
описание на квантови реакционно-дифузионни системи в нелинейно триене.

Roumen Tsekov. Nonlinear friction in quantum mechanics�

The effect of nonlinear friction forces in quantum mechanics is studied via dissipative Made-
lung quantum hydrodynamics. A new thermo-quantum diffusion equation is derived, which is solved 
for the particular case of quantum Brownian motion with cubic friction. It is extended by a chemical 
reaction term to describe quantum reaction-diffusion systems with nonlinear friction as well.
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Nonlinear friction forces are a problem in classical Brownian motion for a 
long time [1]. They are described either by Langevin or by Fokker-Planck equa-
tions [2-4]. However, the rigorous generalized Langevin equation is linear, which 
points out that nonlinear friction forces possess a macroscopic hydrodynamic ori-
gin [1]. For this reason, they are not present in the modern quantum theory of open 
systems [5]. The scope of the present paper is to investigate the nonlinear friction 
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effect on quantum mechanics. The analysis is based on a dissipative Madelung 
quantum hydrodynamics. Thus, the nonlinear friction is a result of nonlinear non-
equilibrium thermodynamics in contrast to the traditional mechanical nonlinear 
friction forces.

A quantum particle in vacuum is described by the Schrödinger equation

iћ∂tψ = – ћ2∂2
xψ / 2m + Uψ,	  (1)

where m is the particle mass and U is an external potential. The complex wave 
function can be generally presented in its polar form ψ ρ= exp( / )iS  , where r 
is the probability density and S / ћ is the wave function phase. Introducing this 
Madelung presentation in Eq. (1) results in the following two equations [6]

∂tr = - ∂x(rV),      m∂tV + mV∂xV = – ∂xpQ / r – ∂xU,	 (2)

corresponding to the imaginary and real parts, respectively. The first equation is a 
continuity one with V ≡ ∂xS / m being the hydrodynamic-like velocity in the prob-
ability space. The second equation is a macroscopic force balance, where the quan-
tum effects are solely included in the quantum pressure pQ ≡ – (ћ2 / 4m)r ∂2

xlnr. 
Note that the latter depends both on the local density and its spatial derivatives 
and, hence, the Madelung hydrodynamics is a non-local theory.

The Madelung presentation of the Schrödinger equation opens a door for in-
troduction of dissipative forces in quantum mechanics. The friction force of a par-
ticle in a classical environment depends naturally on the particle velocity. Hence, 
one can add a macroscopic friction force f(V) in the force balance (2) to obtain

m∂tV + mV∂xV = – ∂x(pQ  + kBTr) / r – ∂xU + f(V).	 (3)

Here the new pressure term accounts for the osmotic thermal pressure due to 
the environment temperature T. Thus one arrives to a dissipative Madelung hydro-
dynamics. At strong friction the inertial terms on the left-hand-site of Eq. (3) can 
be neglected as compared to the friction force and the hydrodynamic-like velocity 
can be expressed in the form V = f–1 (∂xm), where f–1 is the inverse function of f 
and m ≡ Q + kBTlnr + U is the local chemical potential. The chemical potential 
term Q ≡ – ћ2∂2

x
ρ  / 2m ρ , corresponding to the quantum pressure via the 

Gibbs-Duhem relation dpQ = rdQ, is in fact the Bohm quantum potential. While 
the latter is an icon in the de Broglie-Bohm theory, the symbol of the Madelung 
hydrodynamics is pQ. Introducing now this expression for V into the continuity 
equation (2) results in a generalized nonlinear diffusion equation
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∂tr = ∂x[rf–1(∂xm)].	 (4)

The equilibrium solution of Eq. (4) corresponds to V = 0 or a constant chemi-
cal potential, which is in accordance to the rules of thermodynamics. A typical 
model for f–1 in activated diffusive processes is the hyperbolic sine function fol-
lowing from the Arrhenius law.

Equation (4) is valid for arbitrary friction forces. Usually the friction force 
is well approximated by the expression f(V) = – b1V – b3V3 with two friction co-
efficients, a linear one b1 and a cubic one b3 [7]. At low hydrodynamic velocity 
not very far from the equilibrium the cubic term becomes negligible and, hence,  
f–1(∂xm) = – ∂xm / b1. Thus Eq. (4) reduces to a quantum Smoluchowski equation 
[8]

∂ = ∂ ∂ + + ∂t x x xQ U b Dρ ρ ρ[ ( ) / ],1∂ ∂∂ ∂ 	 (5)

where D = kBT / b1 is the classical Einstein diffusion constant. The solution of 
Eq. (5) for a free particle at zero temperature is a Gaussian distribution density 
with dispersion obeying the sub-diffusive quantum law σ2

1=  t mb/  [8]. In the 
opposite case far from equilibrium the cubic term dominates the friction force 
and f bx x

− ∂ = − ∂1
3

3( ) / .µ µ∂ ∂  Thus Eq. (4) acquires the following strongly nonlinear 
form

∂ = ∂ ∂ + +t x x BQ k T U bρ ρ ρ[ ( ln ) / ].3
3∂ ∂ ∂ 	 (6)

For a classical particle moving in a biquadratic external potential U = Kx4 / 4  
the solution of Eq. (6) reads r = G(3 / 4)exp(– x4 / 4s4) / ps, where the average 
displacement evolves in time according to the equation

. F K k T K k T K b tB B( / , / ; / ; / ) / ( / ) / .1 3 1 3 4 3 4 34 43
3

3σ σ = 	 (7)

Here G and F are the gamma and hypergeometric functions, respectively. 
The plot of Eq. (7) is shown in Fig. 1. As is seen, initially the evolution is su-
per-diffusive, than passes through a normal diffusive regime and ends with a 
sub-diffusive part. At infinite time s2

∞ = kBT / K and the probability density re-
duces to the equilibrium Boltzmann distribution. In the case of a free classical 
particle with a cubic friction force Eq. (7) provides a super-diffusive classical law 
σ2 3

364 27= k Tt bB / .  Hence, the nonlinear friction accelerates the particle diffu-
sion, which is, however, non-Gaussian.
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Fig. 1. Dimensionless dispersion K k TB/ σ2  vs. dimensionless time ( / ) /4 3 3
3 K b t .

In the case of free quantum diffusion at zero temperature Eq. (6) reduces to

∂ = ∂ ∂ = −∂ ∂ ∂ + ∂t x x x x x xQ b mbρ ρ ρ ρ ρ ρ( / ) [ ( ln ln ln ) / ].3
3 2 2 3

3
3 4∂ ∂ ∂ ∂ ∂ ∂ ∂  	 (8)

At large x one can neglect the third-derivative term in the brackets of Eq. (8) 
and the solution of the remaining equation is ρ σ πσ= −3 3 2 3 3 46 3 3Γ( / )exp( / ) /x .  
Surprisingly, the corresponding displacement obeys a normal diffusive law 
σ2 2

3
32 2=  / mb t . This unexpected result shows that the quantum sub-diffusiv-

ity compensate the super-diffusivity originating from the cubic friction in such a 
way that the final result corresponds formally to the classical Einstein law with a 
novel quantum diffusion constant 

2
3

3 2/ mb . The distribution density above is, 
however, non-Gaussian again.

Generally, it is possible to find the inverse function of the complete nonlinear 
friction force f(V) = – b1V – b3V3 and to perform the corresponding analysis of 
Eq. (4). The physical transparency will suffer, however, due to mathematical com-
plications. We expect the appearance of many sub- and super-diffusive regimes, 
which alternatively can be formally described via fractional diffusion equations 
[9]. In the case of diffusion in a structured environment it is expected that the 
friction coefficients b1 and b3 will depend on the local particle position x [10]. 
This will not change, however, the validity of the general diffusion equation (4). 
Moreover, any more advanced model for the local chemical potential m could be 
directly employed in Eq. (4). In this way, for instance, a relativistic correction on 
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the nonlinear quantum Brownian motion can be obtained [11].
Thermodynamically, Eq. (4) can be also accomplished by a chemical reaction 

rate R to describe quantum reaction-diffusion systems as well [12]

∂ = −∂ ∂ +−
t x xf Rρ ρ µ ρ[ ( )] ( ).1∂ ∂ ∂ 	 (9)

This nonlinear equation accounts for the nonlinear friction and quantum ef-
fects on the typically nonlinear temporal and spatial reactive self-organizations. 
In the case of a linear friction model without an external potential Eq. (9) reduces 
to

∂ = ∂ ∂ + ∂ + ≈ − ∂ + ∂ − −t x x x x x eqQ b D R mb D kρ ρ ρ ρ ρ ρ ρ( / ) / ( ),1
2 2 4

1
24∂ = ∂ ∂ + ∂ + ≈ − ∂ + ∂ − −t x x x x x eqQ b D R mb D kρ ρ ρ ρ ρ ρ ρ( / ) / ( ),1

2 2 4
1

24∂ ∂ ∂ ∂ ∂ ∂ 	 (10)

where the last approximate expression represents a linearization around the con-
stant equilibrium density req, defined by R(req) = 0, and k ≡ – (∂rR)eq is a first-or-
der reaction rate constant. The Fourier image of the solution of Eq. (10) reads

ρ ρ δq eq kt q k Dq q mb t= − − + − + +[ exp( )] ( ) exp[ ( / ) ],1 42 2 4
1 	 (11)

where q is the wave vector. As is seen, the quantum term describes a biharmonic 
diffusive process. Thus, quantum effects result in a faster spreading of the initially 
localized wave packet. It dominates at low temperature, where the classical diffu-
sion constant D becomes negligible.

In the case of lack of friction one can add the reaction rate directly into Eq. 
(2) to obtain

∂ = −∂ +t x V Rρ ρ ρ( ) ( ),∂ ∂           ∂ + ∂ = −∂ +t x xV V V U Q m( ) / .∂ ∂ ∂ 	 (12)

If the velocity is nearly quasi-static V∂xV >> ∂tV an integration of the second 
dynamic equation yields the hydrodynamic-like velocity V2 = V2

0 – 2(U + Q) / m, 
where V0 is an integration constant. Introducing this expression in the first equa-
tion leads to

∂ = −∂ − + +t x V U Q m Rρ ρ ρ[ ( ) / ] ( ).0
2 2∂ ∂ 	 (13)

As is seen, this is a strongly nonlinear equation even if the friction is miss-
ing. In the case of a free particle (U = 0) after linearization around the equilibrium 
density Eq. (13) reduces to
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∂ = − ∂ − ∂ − −t x x eqV m V kρ ρ ρ ρ ρ0
2 3 2

04 / ( ).∂ ∂ ∂ 	 (14)

This equation describes a quantum diffusion of the convective flow. The Fou-
rier image of the solution of Eq. (14) reads

ρ ρ δq eq kt q k iqV iq m V t= − − + − + −[ exp( )] ( ) exp[ ( / ) ].1 40
3 2 2

0 	 (15)

Thus, the effective convection rate V q mV0 0
21 2[ ( / ) ]−   possesses a quan-

tum retardation effect, which scales with the convective de Broglie wave length 
 / .2 0mV

The equations above describe chemical binding of an electron by the envi-
ronment. In some cases electrons interact effectively each other; an example is a 
Cooper pair. To describe the dissipation in a gas of electrons one could employ the 
concept of viscous friction among them. Hence, in a Stokes flow at zero tempera-
ture of an electron gas with kinematic viscosity v the pressure force balance (3) 
reads ∂ = = ∂ ∂x Q x xp f V m V( ) ( )ρ ρν∂ ∂ ∂ . The integration of this equation is straight-
forward and yields an expression for the hydrodynamic-like velocity

V m x= − ∂( / ) ln .

2 24 ν ρ∂ 	 (16)

Introducing now Eq. (16) in the reactive continuity equation the latter chang-
es to

∂ = −∂ + = ∂ +t x xV R m Rρ ρ ρ ν ρ ρ( ) ( ) ( / ) ( ).

2 2 24∂ ∂ ∂ 	 (17)

As is seen, Eq. (17) formally coincides with the classical reaction-diffusion 
equation and the effective diffusion constant reads 2 24/ m ν  [13]. Since in dilute 
gasses the self-diffusion constant equals to the kinematic viscosity, it follows from 


2 24/ m ν ν=  that the kinematic viscosity of an electron gas at zero temperature 
is simply given by ν =  / 2m . The corresponding dynamic viscosity mρν ρ=  / 2  
correlates well to a recent report that at low temperature the dynamic viscosity of 
a unitary Fermi gas scales universally with the density [14]. This is not surprising, 
however, since the collisions between electrons are subject of the Heisenberg un-
certainty principle. Hence, the product of the mean free path and root mean square 
momentum of a particle is limited from below by the half of the Planck constant.

Finally, the measurement problem in quantum mechanics can be described 
also as an irreversible nonlinear process. Obviously, the observer receives infor-
mation about the quantum system via the measurement, being equivalent to ex-
change of informational entropy. Usually in quantum mechanics the measurement 
details are not specified but it is clear that this process disturbs the initially isolated 
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quantum system via additional terms in the system Hamiltonian. A plausible as-
sumption is that the entropy contributes additively to the system Hamiltonian via 
the information density I [15]. In this case, the Schrödinger equation (1) acquires 
during the measurement process the following form

i m U It x ∂ = − ∂ + −ψ ψ ψ ψ2 2 2/ .∂ ∂ 	 (18)

It is important to note here that the information density I depends on the wave 
function via the probability density. For instance, I is proportional to – lnr or 
1 – r for the Shannon or linear entropy, respectively. Thus, Eq. (18) is a nonlinear 
Schrödinger equation and, hence, linear combination solutions and the quantum 
superposition principle are no more valid. Thus, the initial wave function super-
position collapses in the particular state corresponding to the measured value [16]. 
Since the information density I is a projective function of ψ any further measure-
ment of the same quantity will deliver the same result, which corresponds exactly 
to the von Neumann measurements.

How it is well known, the kinetic energy term in the Schrödinger equation 
represents, in fact, the Fisher information density [17–20]. Therefore, Eq. (18) 
describes an information exchange between the internal Fisher and external ob-
server entropies during the measurement process, adjusted correspondingly by the 
interaction potential U. The hydrodynamic form of Eq. (18) reads

∂ = −∂t x Vρ ρ( );∂ ∂      m V mV V p I Ut x x Q x x∂ + ∂ = −∂ + ∂ − ∂/ .ρ∂ ∂ ∂ ∂ ∂ 	 (19)

Comparing how this result with Eq. (3) shows that the thermal osmotic pres-
sure kBTr is equivalent to the Shannon entropy density multiplied by temperature, 
I = – kBTlnr. Hence, the effect of a thermal environment consists in continuous 
measurements as well. If the communication between the system and environment 
is imperfect, a dissipative force f(V) should also appear in Eq. (19) to describe 
disinformation by the environment due to the Second law.
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