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Виктор Атанасов. УРАВНЕНИЕТО НА ФОРМАТА-ШРЬОДИНГЕР ВЪРХУ 
ЕЛАСТИЧНА МЕМБРАНА 

Тук демонстрираме еквивалентност между уравнението на формата на еластична 
мембрана и квантовомеханичното двумерно уравнение на Шрьодингер за (квази-) частица 
върху повърхността на мембрана. Кривината на повърхността е свързана с неочаквано 
статично формирование подобно на конформон: концентрация на плътността на вероятноста 
да се намери (квази-) частицата там, където е концентрирана еластичната енергия, или, с 
други думи, там, където кривината има максимум.

Victor Atanasov. THE SHAPE-SCHRÖDINGER EQUATION ON AN ELASTIC MEM-
BRANE

We demonstrate an equivalence between the elastic membrane shape equation and the quan-
tum mechanical two dimensional Schrödinger equation for a (quasi-) particle on the surface of the 
membrane. Surface curvature is related to an unexpected static formation: the concentration of the 
expectation value to find a (quasi-) particle where the elastic energy is concentrated, namely where 
surface curvature has a maximum. 
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Setting any of the coordinates of a quantum system to zero is an act prohibit-
ed by the Uncertainty Principle due to Werner Heisenberg, a cornerstone principle 
of a viable quantum mechanical theory. Therefore the correct quantum description 
of a (quasi-) particle on a two dimensional surface (which can be severely curved) 
has to account for the embedding. Setting the off-surface coordinate to zero is 
prohibited, therefore the (quasi-) particle’s wave function would be able to probe 
the surface for bending through the embedding space. Consequently, a geometri-
cally induced term appears in the surface Schrödinger equation. The complete 
quantum procedure producing the two dimensional quantum equation is realized 
by constraints (external potentials [1]) forcing the system to occupy less degrees 
of freedom available for the (quasi-) particle, namely in two-dimensional electron 
(or hole) systems (2DES) such as those of graphene and graphene oxide.

Thus the (quasi-) particle’s wave function is separable into surface and nor-
mal (off-surface) components. However, absent a truly two dimensional system 
that can be easily bent, the effect of geometric potential on the electronic band 
structure has been justifiably ignored in device engineering up to now. 

Graphene and its oxide represent a class of materials which can display the 
effects produced by the geometric potential due to bending of the surface.

Specifically, the two dimensional form of sp3/sp2 hybridized carbon, known 
as graphene oxide, is a flexible 1 nm thick soft membrane embedded in three 
dimensional space. This is an example of novel material which carriers are of 
Schrödinger type. 

The quantum dynamics of a nonrelativistic (quasi-) particle constrained to an 
arbitrary orientable surface is well explored: the curvature of the surface induces 
an attractive (has a minimum where maximally curved) geometric potential due 
to da Costa [1]

,

where m*is the effective mass of the particle, ћ is the Planck’s constant;  

 and K = k1k2 are the Mean and the Gaussian curvature of the sur-

face, respectively. Here k1,k2  are the two position-dependent principal curvatures 
of the surface [2]. 

This potential is purely a result of particle confinement, and is independent of 
the electric charge of the particle; it is therefore the same for electrons and holes. 
It appears in the Schrödinger equation in curvilinear surface coordinates

This result is applicable in the limit x0H→0 where x0 the thickness of the 
“two-dimensional” surface is and is the Mean curvature. Note x0 corresponds to 
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the width of the normal to the surface quantum well in 2DES where particles are 
confined.

Now we reproduce the constrained quantum problem for the carriers confined 
in two dimensions [1]: separating the dependence of the wave function on surface 
and normal variables χ = χt(q1,q2,t)χn(q3,t) we have a set of two equations deter-
mining the quantum evolution of the surface part χt  and off-surface χn(q3,t)  part

 
(1)

 
(2)

Please, keep these equations in mind in order to see the emerging equivalence 
between quantum and elastic properties.

Now we turn to the elastic energy of the membrane. The shape of membranes 
is due to the curvature of the membrane considered as a regular two-dimensional 
surface embedded in the Euclidean three-dimensional space. The elastic free en-
ergy of a piece of membrane is expressed in terms of the curvature invariant: 
the Gaussian curvature. The shape equation for the equilibrium conformation of 
membranes arises from a minimization technique. 

The  functional for the shape energy due to Ou-Yang and Helfrich is [3]

where c0 is the spontaneous curvature of the membrane’s surface, kc is the bending 
rigidity of the membrane, l is the membrane’s tensile strength or surface tension, 
∆p is the pressure difference between the upper and lower sides of the membrane.

Standard variational calculus computation dF = 0 yields the shape equation 
[3–5]:

Here ∆S is the Laplace-Beltrami operator. The shape equation is for the Mean 
curvature H.
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Suppose the membrane is open and immersed in homogeneous medium, then 
the pressure difference vanishes ∆p = 0. In case of vanishing spontaneous curva-
ture c0 = 0, which is only natural for symmetric membranes [3], the shape equa-
tion reduces to 

 
(3)

Next, inserting  into (1) the stationary Schrödinger equation 
on the surface

 
(4)

The similarity between (3) and (4) is obvious for the stationary states of the 
Schrödinger equation. However, a factor of 2 stands in front of the geometric po-
tential in the elastic shape equation. 

This equivalence between these two equations is an example of the “remark-
able coincidence: The equations for many different physical situations have ex-
actly the same appearance...this means that having studied one subject, we im-
mediately have a great deal of direct and precise knowledge about the solutions of 
the equations of another.” as Richard Feynman states in his famous course (V 2, 
ch. 12, p. 12–1).

Here see the profound meaning for the physics of membranes of the differ-
ential operator 

 (5)

Here a is a parameter. Whenever we have a combined stationary elastic and 
quantum eigen-problem on a two dimensional open surface the following hold

Fig. 1. The profile curve G
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Here the correspondence goes in the following direction

therefore we can assume that having a solution to the shape equation, we also have 
a solution to the Schrödinger equation on the surface. However, it is easier said 
than done. The shape equation is a fourth order (in terms of the position vector 
spanning the surface) nonlinear partial differential equation. The path to its solu-
tions is far more complicated that to the solutions of the Schrödinger equation on 
the surface. We can reduce the complexity of the problem using the symmetries of 
the shape equation [6]. The symmetry group of the membrane shape equation (3) 
is restricted to the group of motions in R3 whose basic generators vj (j = 1, ..., 6)  
and their characteristics Qj are listed in the Table 1 due to [6].

Table 1. The generators and their characteristics of the group of motions in R3 which is the 
symmetry group of the membrane shape equation. The surface profile is given in Monge 

representation 

GENERATORS CHARACTERISTICS
Translations

Q3 = 1

Rotations

Q4 = yz1 – xz2

Q5 =x – zz1

Q6 =y – zz2

Since we know the symmetry group of the shape equation, it is possible to 
look for the so-called group-invariant solutions of the equation, that is, the solu-
tions, which are invariant under the transformations of the symmetry group [7].  
Each group-invariant solution is determined by a reduced equation obtained by 
a symmetry reduction of the original one. Essentially, different group-invariant 
solutions correspond to the groups generated by the vector fields v1 and av3+v4 
(the optimal system of one-dimensional subalgebras of the symmetry algebra of 
the shape equation), that is translationally-invariant and rotationally-invariant so-
lutions.
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Nevertheless, only a few analytic solutions to the shape equation are pres-
ently known. These are: spheres and circular cylinders, Clifford tori, Delaunay 
surfaces, circular biconcave discoids, nodoid-like and unduloid-like shapes, some 
types of Willmore and constant squared mean curvature surfaces as well as cylin-
drical surfaces. Besides for the spheres and circular cylinders, explicit parameter-
izations are available for the surfaces of Delaunay and the generalized cylindrical 
surfaces [8].

The axisymmetric membranes are surfaces of revolution obtained by revolv-
ing around the Z-axis its profile curve G laying in the XOZ-plane. If s denotes the 
arclength along the curve and θ(s) denotes the slope of the tangent to the curve 
with respect to the OX-axis measured counterclockwise, the following hold:

One can represent the profile curve G also by the graph (x,z(x)) of the func-
tion z = z(x) (see Fig. 1). Employing the calculation technique of [9], the shape-
Schrödinger equation (3-5) reduces to the following nonlinear third-order ordi-
nary differential equation:

The solution to the shape-Schrödinger equation for a rotational surface is

The solutions to θ having the property of non-constant mean curvature H(x) 
is an open problem and will be discussed elsewhere.
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In conclusion, we state the main observation in the paper: the shape equation 
for an elastic open membrane is equivalent to the Schrödinger equation on the 
surface. The main consequence is the concentration of the probability density for 
a (quasi-) particle on the surface where its curvature has a maximum (the elastic 
energy has a local maximum). Similar mechanism in one dimension is reported 
in [10]. 
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