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1. INTRODUCTION

The environmental hazard of oil for the marine system has been studied and 
known for long time [1] and still oil spills are observed relatively often due to 
accidental or deliberate oil discharges. Some of the big oil pollution accidents such 
as the Deepwater Horizon spill in the Gulf of Mexico in 2010 or the Prestige tanker 
near the coast of Galicia in 2002 have attracted significant media interest and social 
outrage. Even though according to ESA accidental discharges hold only 7% of the 
oil pollution and operational discharges from tankers in rivers and oceans sum up to 
80% of the oil spills [2]. Unfortunately in most cases they remain not traced.

There are various methods for ocean surface monitoring however the 
spaceborne remote sensing has proven to be one of the most efficient because of the 
large range of provided spectral information, great accuracy and high frequency of 
provided data. The identification of an oil spill, its extent and the type of the spill – 
if crude or natural oil – can be gained by this type of monitoring. The combination 
of this information with airborne monitoring can provide additional evidences 
about the pollutant. Very often it is necessary to analyse data from different sensors 
and wavelengths in order to discriminate between alga blooms, look-alikes and 
man-made slicks. The calculation of a set of features, such as contrast, shape, 
homogeneity and slick surroundings can contribute with additional clues for the 
detected object and thus support to distinguish actual oil from look-alikes. These 
procedures could significantly reduce the false alarm ratio for the automatic oil 
spill detection. 

Synthetic Aperture Radar (SAR) compared to other methods remains the most 
efficient satellite sensor for oil spill detection exploring large areas regardless 
daytime and weather conditions. These type sensors provide regularly data and can 
detect even small amounts of oil without the need for good image resolution. The 
satellites equipped with SAR deliver data from different frequency bands, making 
it useful for various environmental purposes. This method presents also some 
limitations: it does not deliver information for the oil thickness and type. Some 
problems appear also due to the wind and water interaction. 

Other space- and airborne methods for oil spill detection include visual, 
infrared and ultraviolet remote sensing, laser fluorosensors, microwave radiometers 
and scatterometers. All of them are useful and partly advantageous compared to 
SAR, however so far they have had only limited success for accurate, regular and 
spacious ocean monitoring.

 Some good reviews on oil slick detection making use of different monitoring 
methods have been already published. Fingas and Brown [3] have done an excessive 
study on the different methods for detection of oil and on discussing their advantages 
and disadvantages. Another major focus in their review is the description of the 
techniques for slick thickness measurements and for detection of oil in the whole 
water column and on the sea bottom. 
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Solberg's review [4] is a very valuable read with a main focus on SAR and 
space borne-based detection methods, discussing also manual and automatic 
detection approaches.

Alpers et al. [5] reviews the behaviour of different oil types on sea surface 
and presents some discrimination methods such as statistical approaches, using 
differences in the dielectric constant and polarimetric parameters.

Topouzelis [6] presents a study on oil slick monitoring using SAR images 
with a focus on the semi- and fully automatic methodologies for their detection. A 
special advantage of this review is the comparison between different dark object 
classification methods and their operational advantages and disadvantages.

Gens' review [7] covers different applications of SAR images for oceanographic 
purposes such as ocean wave imaging, ocean currents, sea-floor topography, oil 
spill and ship detection, wind speed, rainfall and others.

2. PHYSICAL BACKGROUND

There are different methods for oil spill monitoring depending on the sensor 
type being used. In order to estimate their theoretical feasibility the optical properties 
of oil and water should be considered first.

Measurements of the oil/water reflectivity and relative absorbance for different 
wavelengths have been done, however not across the whole spectrum and with 
limited accuracy [8‒11]. In the review of Fingas and Brown [3] is presented a 
generalized summary of different measurements, coming to the conclusion that 
the oil/water reflectivity and relative absorbance have very similar behaviour for 
different wavelengths ranging from 200 to 1100 nm. The similarity in the properties 
of both media leads to the conclusion that considering only the visible spectrum 
would not be sufficient to firmly distinguish oil.

The visible remote sensing uses radiation with wavelength of 400‒700nm and 
in this range oil has slightly higher surface reflectance than water. Nevertheless 
the absorption/reflection differences are rather small and usually not sufficient 
to clearly distinguish oil from water [12]. The use of polarized lenses has the 
potential of enhancing the visibility of oil and some authors investigate this effect 
[13], however a major difficulty for the visible remote sensing remains the issue to 
reduce the sun glitter, which might be confused for oil sheens [14, 15]. 

The biggest limitation for the visible remote sensing is the need for clear skies 
during the overpass, which is rarely the case. For the implementation of oil spill 
detection algorithms long time series of data are to be analysed, which is hard to 
be obtained considering the overpass period and the problems with the collection 
of usable data.

The use of infrared signal for the detection of oil slicks relies on the thermal 
properties of oil. It heats up faster than water and thick oil films absorb the 
solar radiation. Afterwards a portion is re-emitted as thermal energy and can 



8

be distinguished from water by its higher temperature. Thus thick oil films will 
appear hot, those with intermediate thickness are cool and thin films cannot be 
detected by this method. Some studies have investigated the effect of thickness 
on the temperature and conclude that the minimum detectable layer is between 
10 and 70 μm [3]. The exact reason why intermediate layers appear as cool is 
not completely understood, however the authors make a hypothesis about the 
destructive interference of thermal radiation waves. 

An important limitation of the infrared detection technique is the fact that the 
longer oil stays on sea surface, the more it mixes with it and in general the emulsion 
cannot be detected with infrared sensors [16]. The reason is that the thermal 
conductivity of the emulsion is quite similar to the one of the ambient. It should be 
also mentioned that infrared scanning at night-time presents lower contrast of the 
images compared to daytime results [17], thus the operational use of that method 
is difficult. In addition, the sediments, seaweeds or other organic matter, shoreline 
and oceanic fronts interfere with the infrared signal. In conclusion, there are several 
major disadvantages of the infrared remote sensing for oil spill monitoring, which 
make it an unfavourable choice for the operational use.

Another technique for oil spill detection is analysing the images in the ultraviolet 
spectral band. In this range of the electromagnetic spectrum oil is highly reflective 
even for layers thinner than 0.1 μm. Earlier studies combine ultraviolet and infrared 
images to produce relative thickness map of oil slicks. However, ultraviolet signals 
are also affected by sun glints, biogenic material or wind slicks [18], which is a 
major limitation. This method is not widely used today due to the unimportance of 
the oil thickness when taking counteractions.

Another recent technique makes profit of laser fluorosensors. It is based on the 
excitation of some electronic states in the aromatic compounds in petroleum oils 
after absorption of ultraviolet light. These states release energy through fluorescence 
emission in the visible spectrum range [19‒21]. The emitted radiation is of specific 
wavelength and can distinguish oil from other biologically active materials. Another 
benefit is that the detected signal provides information about the oil types. On the 
other hand, the major limitation is that this type of sampling is done with aircrafts 
and thus is rather inconvenient for large ocean areas. 

Using microwave radiation for ocean monitoring can be done in two ways – 
with active and passive microwave sensors. For the purpose of oil spill detection 
the active remote sensing has proven to be more effective, as the passive sensing is 
dependent on weather conditions and daytime.

The passive microwave sensor measures the reflected space radiation, detecting 
the difference in the emissivity factor for water (0.4) and for oil (0.8) [22].



9

Fig. 1. A SAR image from Baltic sea. The dark objects marked with the white arrows
are oil spills and the other dark formations are look-alikes; image from [4]

Additionally, the change of the signal with the oil film thickness provides a tool 
for measuring the spill thickness. A serious disadvantage is the unsatisfying spatial 
resolution, in the range of tens of meters for a radiometer. Some extensive studies 
on the usage of passive microwave sensors have been presented in [23‒25].

The remote sensing in the microwave spectrum range in active mode is well 
studied and widely spread method, providing good results. The active microwave 
sensor, better known as radar, is widely used for ocean and land monitoring. It sends 
signals in the microwave range and by the detection of their reflectance amplitude 
and phase, one can examine the objects or landscape on the way. The resulting 
radar image of ocean surface is known as sea clutter, because the capillary waves 
reflect the incident radar signal and produce a bright image. On the other hand oil 
on the sea surface dampens the capillary waves and an oil slick appears as a dark 
area in the bright ocean [26]. Similar effect of damping the waves and receiving 
a dark spot on the ocean surface is gained by fresh water and wind slicks, glacial 
flour, biogenic oils and sea weeds, calming the water above them [7]. Extensive 
studies and classification of these and other look-alikes have been accomplished, 
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considering that they are the key for the dislocation of oil spills and false alarms. 
Still the percentage of false detected dark spots is around 20% [27]. 

Fig. 1 is an example of how oil spills and look-alikes are visible on a satellite 
images and it is a SAR image from the Baltic sea. The dark objects indicated with 
white arrows are actual oil spills and the other dark formations correspond to look-
alikes. With this the challenges for the correct classification become obvious.

An important advantage of the active remote sensing technique is its 
implementation regardless weather conditions and daytime since its operation is 
not based on visible light and the water molecules in the air do not reflect the signal. 

Radars used for military purposes are not useful for oil spill detection as they 
remove the clutter signal, essential for oil monitoring. The radars, which deliver the 
best information for environmental remote sensing, are Synthetic Aperture Radar 
(SAR) and Side-Looking Airborne Radar (SLAR). The images, produced by SAR 
are with a better resolution and greater range, making it the better option for ocean 
monitoring. An extensive comparison between SAR and SLAR is done by [28].

SAR radars send signals at different wavelengths, making them useful for various 
purposes. The frequency and the polarization of the SAR sensor have a significant 
impact on the detectability of oil slicks. The different SAR bands correspond to the 
wavelength of the transmitted signal – X-band (2.4 – 3.75cm), C-band (3.75–7.5cm), 
S-band (7.5–15cm), L-band (15–30cm) and P-band (30–100cm).

The accurate measurement of the surface roughness is the key for detecting 
anomaly patterns on sea surface with SAR. An adequate choice for the wavelength 
of the transmitted signal λt is essential, because the backscattered signal will be 
modified by the surface roughness at the same scale as λt. Kim et al. [29] has examined 
the expected dampening of the return signal as a function of the wavelength and 
showed that the dampening ratio of the X-band is higher than that of the C-band for 
fixed incidence angle and wind speed. The high ratio between the transmitted and 
the dampened signal is an indication for the presence of oil. For oil spill detection 
different studies have shown that the X-band delivers best results, followed by 
C-band and L-band [29‒31], as the first two have approximately the same scale as 
the Bragg waves. For large incidence angles θ = 20° ‒ 60° the scattering mechanism 
at the ocean surface can be described with the Bragg scattering theory due to the 
wavelength of the capillary waves which is about a couple of centimetres [32]. 
Using the L-band has proven to be the most inefficient one as the Bragg waves 
don't resonate with the incident signal causing much smaller dampening of the 
backscattered wave [33].

The polarization of the SAR signal plays an important role as well. There 
are horizontal (H) and vertical (V) polarization and the possible combinations of 
transmitted and received signal are HH, HV, VV and VH. There are studies analysing 
the quality and usability of the different polarization combinations [4, 34, 35]. For 
airborne radars the VV polarization provides the best results, however all combinations 
are reasonable to use. The HH polarization is suitable for ship detection, meaning that 
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combined observations usually deliver better results. In the last decade research on 
polarimetric SAR data has proven to deliver good results for oil spill detection [4, 36, 
37]. In this case the polarimetric SAR sensor collects data of all combinations – co-
polarized (VV and HH) and cross-polarized (VH and HV).

3. SATELLITES

The Synthetic Aperture Radar (SAR) is an active method for Earth observation 
and topography monitoring and more specifically their variations in time. A high 
resolution image of the examined surface can be obtained by analysing the intensity 
and phase of the received signal compared to the transmitted signal, as long as the 
scanned objects remain stationary over the scanning period of time. Alternatively 
the principle of SAR functioning can be explained by considering the Doppler shift 
of the echo signal. The vertical position of the objects can be determined comparing 
the upshift and downshift of the echo signal. 

Tremendous reviews with information about the construction principles and 
function of SAR are presented in [38, 39].

For the in-depth understanding of SAR some geometrical definitions should 
be considered, as presented in figure 2. The SAR antenna is moving parallel to 
the Earth surface and vertical to the radar beam and its exact position is known at 
any time. The along track direction of the antenna is referred as azimuth or cross 
range and the perpendicular one – range or cross track. The footprint is the land 
piece scanned at the present moment and the swath is the land strip along which the 
antenna is moving. The swath width can vary from few kilometres up to 20 km for 
an airborne SAR and from 30 to 500 km for a spaceborne SAR. 

The azimuth resolution δa of a SAR is given by the construction specification 
of the synthetic aperture or the path length during the echo signals form the target 
is received by the radar. It can be calculated using

with the factor two in the denominator because of the two-way path of the signal, 
r0‒ the slant range distance, Θa=λ/da ‒ the virtual beam width, λ the radar signal-
wavelength, LSA ‒ the synthetic aperture length and da ‒ the antenna’s length [38].
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Fig.2. SAR geometry with illustration of some of the basic SAR terms; r0 is the slant range,
Θa ‒ the azimuth beam width, and v is the sensor velocity; from [39]

The first approaches for ocean monitoring for oil spills emerged with the 
data, delivered by ERS, ENVISAT ASAR and RADARSAT-1. Later the launch of 
RADARSAT-2, TerraSAR-X, COSMO SkyMed and SENTINEL-1 brought new 
imaging modes and high resolution data on regular basis for the ocean monitoring [4]. 

Earlier the ENVISAT data was mostly used for the operational oil spill 
detection till the end of the mission in 2012. Afterwards its place have been taken 
by the SENTINEL-1A mission launched in April 2014 and 1B launched in April 
2016. There is a lot of information about the SENTINEL missions on the ESA 
official website [40].

The two SENTINEL-1 satellites are identically constructed and have near-polar, 
sun-synchronous orbit with 12 days repeat cycle for each satellite, making a 6-day 
revisit time for the European land and sea area. They share the same orbit plane 
with 180° orbital phasing difference. The satellites use HH‒HV or HH polarization 
for monitoring the polar and sea-ice areas and VV‒VH or VV polarization for the 
other land and water observations. The planning of European Space Agency is to 
launch SENTINEL-1C and SENTINEL-1D in 2021 and 2023 respectively. 

The SENTINEL-1 mission has a single C-band synthetic aperture radar 
instrument working at a central frequency of 5.405 GHz and programmable 
bandwidth of 0–100MHz. It operates in four exclusive acquisition modes – Stripmap 
(SM ‒ used only on request for extraordinary events), Interferometric Wide swath 
(IW ‒ main operational mode for most service requirements), Extra-Wide swath 
(EW) and Wave mode (WV). Table 1 summarizes the important information for the 
SENTINEL-1 acquisition modes and figure 3 pictures the SENTINEL-1 product 
modes visually.
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Fig. 3. Operation modes for SENTINEL-1A and B satellites, from [40]

Table 1. Operation modes of the SENTINEL 1 satellite mission, from [40]

Mode Incidence 
Angle [deg]

Resolution 
[m]

Swath 
Width [km] Polarization

Stripmap 20‒45 5×5 80 HH+HV, VH+VV, HH, VV
Interferometric 
Wide swath 29‒46 5×20 250 HH+HV, VH+VV, HH, VV

Extra Wide swath 19‒47 20×40 400 HH+HV, VH+VV, HH, VV

Wave
22‒35
35‒38

5×5 20×20 HH, VV

The SENTINEL missions are of a particular interest for the research community 
due to the free access to the data base. The website of the Copernicus Open Access 
Hub [41] provides data from the SENTINEL-1, 2 and 3 missions freely after a 
short registration. Satellite images gained on different bands, with great accuracy 
and spatial resolution are provided on weekly basis, opening new opportunities for 
non-commercial research. 

The TerraSAR-X mission is a German satellite mission launched by DLR in 
June 2007 with scientific and commercial purposes. Its lifespan was planned for 
5 years, but more than 10 years after the launch, it is still operational. The high 
resolution images of the mission are used for hydrology, geology, climatology, 
oceanography, cartography, environmental and disaster monitoring. The SAR 
antenna in flight attitude points at 33.8° off nadir. It runs on a sun-synchronous 
circular down-dusk orbit with a revisit period of 11 days. It is equipped with a 
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X-band SAR antenna with 31 mm wavelength or a 9.6 GHz frequency. The spatial 
resolution is 40 m and the coverage is up to 270×200 km2 making it suitable for 
observation of even small oil spills. It is also particularly useful for ship detection. 

TanDEM-X is the follow-up twin mission of TerraSar-X, launched 3 years 
later, in June 2010. It has a high vertical accuracy better than two meters and 
together with TerraSAR-X it is from the first configurable synthetic aperture radar 
interferometers. TanDEM-X flies in close formation to TerraSAR, only couple of 
hundred meters apart, monitoring the Earth from different angles. More information 
about the missions can be found on the official DLR-website [42].

The satellite RADARSAT-2 was launched by the Canadian Space Agency 
in December 2007 and is still actively monitoring the Earth. It is a commercial 
mission, enhancing marine surveillance, ice monitoring, disaster management, 
environmental monitoring, resource management and mapping. RADARSAT-2 
is equipped with a C-Band active antenna with centre frequency of 5.405 GHz 
and bandwidth of 100 MHz. On the website of CSA there is some more valuable 
information about the mission [43].

4. ALGORITHMS

With the growing amount of satellite data over different ocean and sea regions 
worldwide the possibilities for marine monitoring have increased dramatically. 
The manual image processing is time consuming and requires the availability 
of skilled operators which is significant limitation for the process optimization. 
Considering that a fast reaction is crucial for undertaking adequate counteractions, 
the importance of an automatized process for oil spill detection arises.

For the automatic detection of anomaly sea patterns, or dark objects as they 
appear on SAR images, there are certain procedures during the image processing 
which should be done in order to detect spills.

The first step when working with raw SAR data is always the pre-processing 
of the image. This includes image calibration, land masking and speckle reduction. 
These steps enhance the visibility of dark areas and make the distinction of their 
borders easier. Secondly, the dark spots are detected and isolated in a segmentation 
process. There are different techniques however mostly this is done using 
thresholding. In the third part of the detection algorithm a set of features is extracted 
and calculated for the detected dark objects. The classification process is the last 
step and it strongly depends on the information gained by the previous two steps. 
An extensive archive of correctly classified dark objects for training the algorithms 
and information about the local meteorological conditions is a helpful contribution 
for distinguishing between actual oil spills and look-alikes.
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The image segmentation and feature extraction are the most important steps for 
the automatic oil spill detection. If here a dark area is not detected or the features 
lead to misleading conclusions an oil spill can remain undetected.

The dark formation identification is the first crucial step in oil spill detection. 
For the automatic approach a threshold algorithm, adaptive or not, can be applied. 
An early attempt of this technique is presented in [44], where the bimodal 
histograms in a set window is analysed. It was proven as a good procedure for thick 
spills; however the thin spills remain undetected. A similar approach was presented 
in [45], where a comparison between bimodal histogram method and adaptive 
thresholding is presented. Later it was shown that bimodal histogram provides 
decent results [46]. This algorithm was firstly developed for RADARSAT-1 SAR 
data and it spatially averages the image before applying an adaptive thresholding.

Simple thresholding algorithms use one value for the whole image and all pixels 
are compared to it. This value is usually one half of the average Normalized Radar 
Cross Section (NRCS) of the image or NRSC minus the standard deviation [47].

The adaptive thresholding uses a threshold value, which is calculated locally 
for areas covered by a moving window. Solberg et al. [48, 49] uses a threshold value 
of k dB below the mean value of the moving window. The value of k is calculated 
using a multi-scale pyramid approach and a clustering step. Karathanassi et al. [50] 
uses a fully adaptive value to local contrast variations. The technique of hysteresis 
thresholding was firstly described by [51]. It detects the edges of Gaussian-smoothed 
image and linear dark formations are successfully detected [52].

Another method based on the Laplace of Gaussian (LoG) and Difference 
of Gaussian (DoG) operators are presented in [53]. Firstly the original image is 
reduced by a unit of 2 by 2 pixels and multilayer images with decreased effect of 
noise and sea clutter are created. For the detection of dark areas the LoG derivative 
operator is applied. The sharpness of the oil spill shape is measured with a first 
order derivative operator ‒ DoG. This effect is notable because water and oil are 
electromagnetically different. This makes the gradient of the image grey value on the 
water-oil boundary different. The wavelet packet transformation is a segmentation 
technique proposed by Liu et al. [54] and its linear feature detection scheme with 
LoG-operator as analysing wavelet. It is analogous to Fourier transformations, but 
localized in frequency and time. For the transformation are selected areas with 
multiple histogram peaks and for the extraction of small scale features is taken an 
edge detector wavelet transformation [54, 55]. The 2D wavelet transformation is 
highly efficient bandpass filter and can separate various scale processes delivering 
phase/location information in SAR image. It is good for near real-time screening of 
satellite data, data reduction and image enhancement.

The fussy clustering is a method where for each pixel a function is selected, 
which measures how much the pixel belongs to a certain value. Afterwards the 
Fuzzy C means (FCM) algorithm is applied and a pyramid structure is used to 
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find membership values. The uncertain pixels are arranged in the lower pyramid 
level. A Sobel operator is used to enhance main edges of the original filtered image 
[56]. Firstly a fuzzy clustering is taken for preliminary partition of the pixels on 
the basis of grey level intensities and then simple cluster validity criterion is done 
to determine the optimal number of clusters present in the data. Another method 
for dark object segmentation is based on using mathematical morphology for the 
image segmentation [57]. The aim is to detect spills from moving tankers which 
is implemented in the selected features (elongatedness and spill dampening). An 
advantage of this method is that there is no need for prior knowledge about ocean 
conditions and it is also good for features extraction used in the decision process.

5. FEATURES

The different methods described in the previous part are used for the detection 
of suspicious structures on sea surface. Hereby it is important that during the 
detection algorithm the shape of the object is preserved as it is the one of the keys 
for distinguishing between actual oil slicks and look-alikes.

For creating a working oil spill detection algorithm the dark objects should be 
characterized following a certain characterization criteria. Every algorithm has a 
different set of features, but generally they can be organized in four classes.

The spatial geometry and shape of the dark object is analysed in almost every 
oil spill detection algorithm. Considering this information together with of some 
regional specifications of winds and currents, the differentiation between oil slicks 
and other surface patterns might be enhanced. Very often oil is discharged from 
moving tankers. In that case calculating the elongatedness, or the ratio between 
width and length of the dark object, is a very useful feature [57].

The backscattering level of the dark object and the surrounding is another 
informational class of features. For a neural networks classification backscattering 
ratios of different regions are considered as crucial [58]. The backscattering of the 
background surrounding is important due to wind speed dependence as well [47]. 

In the set of features the contextual positioning of the dark object is of 
particular interest. An additional database containing the locations of oil pipelines, 
platforms or the vessel traffic information might contribute significantly to the 
correct classification. Wind history is also useful for slick classification and age 
estimation [59].

The texture of a SAR image provides information about the spatial correlation 
between neighbouring pixels. The comparison between pixels of different regions 
on the SAR image puts the dark object in correlation with other regions.

In the following paragraphs the set of features for three different algorithms – 
adaptive thresholding, statistical classification method and neural networking – are 
observed.
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Solberg et al. [60] has analysed Radarsat and ENVISAT SAR images with an 
adaptive thresholding algorithm. The observed features are:

• Slick complexity
• Slick power-to-mean ratio
• Slick local contrast
• Slick width
• Slick local neighbours
• Slick global neighbours
• Border gradient
• Slick area
• Distance to detected ship
• Slick planar moment
• Number of regions in the image
• Slick smoothness contrast
Fiscella et al. [47] describes an oil spill detection method where low resolution 

images are inspected for the presence of suspicious structures manually or 
automatically. Later the detected dark formations are classified using a Mahalanobis 
classifier and a compound probability classifier – both statistical classification 
methods.

For the automatic analysis of a SAR image the dark areas with Normalized 
Radar Cross-Section (NRCS) lower than one half of the average NRCS of sea area 
are selected. The actual oil spill detection is done after identification of the border 
of the dark object and evaluation of the following direct features: 

• Perimeter
• Area
• Average NRCS inside the dark area
• Average NRCS in a limited area outside the dark area
• NRCS dark area standard deviation
• NRCS outside dark area standard deviation
• Gradient of the NRCS across the dark area perimeter
• Form factor: the dispersion of dark area pixels from its longitudinal axis.
Afterwards from this set of features the following quantities are derived/

calculated:
• Perimeter to area ratio
• Intensity ratio between average NRCS inside and outside the dark area
• NRCS standard deviations ratio inside and outside the dark area
• Ratio between NRCS intensity and its standard deviation inside the dark area
• Ratio between NRCS intensity and its standard deviation outside the dark area
• The ratio of the last two ratios.
Then the classification procedure is undertaken.
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In Del Frate et al. [58] a neural network algorithm is used for the dark object 
classification. A long time series of over 600 images from the years 1997 and 1998 
over different areas in the Mediterranean Sea is analysed. A histogram for every 
image is generated and the borders of the dark object are determined. The features 
needed for the dark object classification are the following:

• Area of the object A
• Perimeter P

• Complexity C defined as C 
• Spreading S – low value for long and thin objects and high for objects closer 

to circular shape
• Object standard deviation
• Background standard deviation
• Max contrast – difference between background mean value and the lowest 

value inside the object
• Mean contrast
• Max gradient
• Mean gradient
• Gradient standard deviation.

6. CLASSIFICATION METHODS

The last step of the oil slick detection is the classification procedure, undertaken 
in order to distinguish the actual oil slicks from look-alikes (for example anomaly 
alga blooms, sewage water discharges, surface water currents or capillary wave 
damping caused by local winds).

There are several classification methods published in the literature. An easy and 
common way for dark object classification is the use of statistical classifiers, where 
the decision is based on probability calculations. They are simple and reliable and 
the output can be easily reproduced.

Fiscella et al. [47] is testing a Mahalanobis [61] and a compound probability 
classifier where the probability of a dark object being an oil slick is calculated. The 
Mahalanobis classifier is comparing the set of characteristic features (written in the 
input vector x) with a template, composed from previous measurements. For this 
technique the Mahalanobis distances between the calculated set and the class’s oil 
spill m1 or look-alike m2 is computed. The Mahalanobis distance  is given by

in the matrix form with j = 1,2 and C the covariant matrix of x. For the classic 
compound method the probability p for a dark object being an oil spill is calculated 
using 

C
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p

where pi(xi) are the probability distribution functions for oil spill and qi(xi) for look-
alike classes.

A data set of 123 images was tested [47] and the correctly classified data with 
the Mahalanobis classifier for pMah > 2/3 is 78% and for pMah > 1/2 is 83%. The 
compound probability classifier delivers correctly classified data with pCom > 2/3 is 
79%, and pCom > 1/2 is 82%.

A similar method based on statistical modelling with a rule based approach is 
using the Gaussian density function and is presented by Solberg et al. [48]. Similar 
to Fiscella et al. [47] a template set is used, but here it is derived from a signature 
database of 7.051 dark objects containing 71 oil spills and 6.980 look-alikes. The 
method classified correctly 94% of the oil spills and 99% of the look-alikes.

Another widely used method is the neural network classifier. It is considered 
effective because it operates well with nonlinear mapping of multidimensional 
input on single-dimensional output and complex statistics. Different from other 
statistics based classifier; the neural network approach doesn't need well defined 
relationship between input and output vectors, as it determines it after analysing a 
set of training data.

The neural network algorithm is a mathematical tool for calculating the 
probability of occurrence of a certain event. This is done by creating an input term 
which is then mathematically manipulated through multiple neurons where each 
calculates the sum of the inputs adds a bias term and then provides the result to 
the up-following neurons. The model topology is specific for each neural network 
and gives how the input, output and the hidden units are interconnected. In the 
feedforward network, which is also applied for the oil spill case, the input flows 
only forward to the next-level neurons and cannot return to the previous layers. 

Del Frate et al. [58] used in their extensive study a neural network classification 
algorithm. They analysed 600 ERS images from which they extracted 139 images 
with dark objects, 71 of which were oil spills and 68 – look-alikes. More details about 
the exact functioning principles can be found in the publication. Before analysing 
the actual images the system is trained in order to get optimized results for the given 
issue. Once trained the network has examined the given pictures. It has misclassified 
18% of real oil spills on the images as look-alikes and 10% of the look-alikes were 
wrongly classified as oil. The overall rate of misclassified pixels is 14%.

A more recent study based on article neural network is presented in [62] with 
91.6% correctly classified oil spills and 98.3% look-alikes.

Another classification method based on fuzzy classification rules is presented 
by Karathanassi et al. [50]. Firstly homogeneous dark objects are extracted in any 
given resolution using a threshold technique, adaptive to any local contrast and 
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later they are classified using a fuzzy logic. Each feature of the calculated set is 
considered as a separate class and each class consists of a set of fuzzy expressions. 
This makes the logical operation and the estimation of each specific value more 
accurate. The method processed 12 SAR images and classified successfully high 
percentage of the oil spills and the look-alikes.

It is difficult to compare the skill of the different classification methods, 
because they use different data sets, the dark object algorithms function differently 
and the set of features vary. Therefore the reported classification accuracy cannot 
be compared directly.

Analogously it is hard to compare the computational time and make statements 
which technique delivers fastest the most accurate results. Analysing the same data 
set using different segmentation techniques, features and classification methods 
could deliver valuable information for possible advantages and disadvantages. 

7. EXAMPLES

Regional studies focusing on the local specifications of the different water 
basins have been done for most of the European seas. Several initiatives exist, 
monitoring European waters and delivering real-time information about oil spills. 
This is very important considering that a fast reaction is crucial for identifying the 
polluter.

The platform Oceanides [63] is a database with information collected from 
observations via aircraft and satellite radar images, all available from a single 
source. The project is funded by the European Commission as part of CORDIS 
(Community Research and Development Information Service). Oceanides is 
focused on marine monitoring and can be used for different purposes. The tool 
organizes the data depending on the interest of the operator and assembles the 
knowledge required to establish a more effective monitoring of oil pollution and 
identification of possible polluters. It is operational for European waters and is 
already implemented on regional scale for oil pollution monitoring.

Another on-line platform created for oil spill detection is CleanSeaNet [64]. 
This platform is a project of the European Maritime Safety Agency which is a 
decentralized EU agency. CleanSeaNet is a service focused on identification of 
oil spills, combined with vessel detection in European waters and it works by 
analysing radar satellite images. The images are processed within 30 minutes after 
the satellite passes overhead and an alarm for potential pollution is issued directly 
after. Correlating satellite data of detected vessels with vessel traffic reports 
increases the possibility of correctly identifying the polluter.

CleanSeaNet collects supplementary data such as optical marine images and 
oceanographic and meteorological information, which significantly increases the 
correct detection ratio.
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For Bulgaria the Black sea is of a particular interest considering the geographical 
location and the importance to the region.

The extensive study of Malinovsky et al. [65] deals with the SAR analysis for 
oil spill detection particularly for the Black sea region. Using the polarization ratio 
in the ENVISAT Alternating Polarization Images they have detected 424 oil spill 
events in proximity to the major ship routes and oil platforms.

Ivanov and Kucheiko [66] have studied SAR images of the Eastern Black sea 
(2011‒2013) and the Northern & Middle Caspian Sea (2009‒2013) and compared 
the extend and source of the oil pollutions, finding very different results for the both 
regions. The oil spills in the Black sea are caused mainly by ships (tank washings 
and deliberate illegal discharges) and have a great extend up to 320 km2. Those in the 
Caspian sea are of a much smaller surface area not exceeding 70 km2 coverage [66].

Other studies of oil-spills in the Black sea are presented by [67‒69], where 
different observation methods for oil slicks detection are applied. 

In the past there were attempts to establish a real time monitoring system for 
tracking oil spills in Black sea as well; however as to the present moment they are 
not operational. 

The online platform of JRC (Joint Research Centre) published information 
on the oil-spills discovered in the Black Sea in the period 2000‒2004 (http://
publications.jrc.ec.europa.eu/repository/handle/JRC55159). 

The results were used in the project of the Commission on the Protection of 
the Black Sea Against Pollution (http://www.blacksea-commission.org/_projects_
MONINFO.asp) "Monitoring and Information Systems for Reducing Oil Pollution" 
implemented in the period 2009‒2010 with the main objective to prevent and take 
measures against operational/accidental/illegal oil pollution. 

8. CONCLUSIONS

Spaceborne SAR sensors have proven to be most efficient among others for 
oil spill detection and their capacity for long-term, large-scale ocean monitoring 
has been demonstrated. Their good spatial resolution and feasibility at all-weather, 
all-time makes them a reliable source for long time series data. The latter is 
determining for creating a fully automatized method for oil spill detection, since 
every algorithm needs a data base for training, so that the dark object classification 
can be performed with a minimum false alarm ratio.

In this article various algorithms for oil spill detection have been presented, 
all of which deliver reasonable results. It is important to stress the fact that their 
success ratio cannot be compared directly, since all use different data sets with 
different quality. Moreover a serious limitation is the use of unverified data. For the 
determination of the success ratio the dark objects should be classified as oil spill or 
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look-alike, based on the optical inspection of the SAR images, done by an operator, 
which is not always an available approach.

It is not trivial to apply a working detection algorithm to a new sea area. 
In order to create an operational procedure for a particular geographic region 
some specifications of the water basin should be considered. Those include local 
topography, water density, colour, seasonal variations in alga blooms, winds and 
currents and the coastal borders. 

In general, creating a fully automatized detection method is a challenging task, 
considering the long list of limitations. A semi-automatic method might be more 
beneficial considering the success ratio.

In this review different methods for the image segmentation procedure for 
extraction of dark objects are presented – adaptive and hysteresis thresholding 
algorithms, a method using the Laplace of Gaussian and Difference of Gaussian 
operators, a wavelet packet transformation, fuzzy clustering method and one, based 
on mathematical morphology. 

For the correct classification of dark formations the extraction and computation 
of a set of features, different for every algorithm, is crucial. The major feature 
classes are presented together with some concrete examples.

Different classifi cation procedures are presented – one based on probability 
methods, another using the Gaussian density function, a neural network algorithm 
and a fuzzy classifi er. The success ratios for the different approaches are listed.
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