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CHARGES OF OPTICAL VORTICES: RECENT RESULTS

In this paper we introduce the optical vortices (OVs) and their main characteristics. It is shown 
that one of them, the topological charge (TC), can be controllably manipulated leading to far-field 
beam reshaping. The TCs rule also the fundamental interactions between OVs. OV lattices composed 
from hundreds of OVs with alternating TCs are generated. The controllable manipulation of the TCs 
of the vortices in such lattices is shown leading to a dramatic beam reshaping. Simple vortex TC 
algebra is ascertained also in the nonlinear regimes of four-wave frequency mixing and high harmonic 
generation. 
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1. INTRODUCTION

Optical vortices (OVs) are two-dimensional singular beams with spiral phase 
dislocations in their wavefronts [1]. OVs carry photon angular momentum, which can 
be transferred to matter and it is referred to as the topological charge (TC). The TC m 
is a positive or negative integer number corresponding to the total phase change 2πm 
over the azimuthal coordinate φ It is known that a pair of singly and equally charged 
OVs placed on a bright background beam, rotate and repel each other [2, 3], whereas 
OVs of opposite TCs translate with respect to the background beam, attract each oth-
er and eventually annihilate. For the first time the possibility to stabilize ensembles of 
equally-charged OVs against rotation by a suitable choice of the topological charge 
of a “control OV” nested in the ensemble center is proved numerically in [4]. Specifi-
cally, if an OV with a TC opposite to the TCs of the rest of the OV ensemble is posi-
tioned in the center of the structure, the rotation of the entire ensemble is suspended. 
An extension of such vortex ensembles towards large stable regular OV lattices is 
also analyzed in [4] and studied for the first time experimentally in [5]. 

Vortices are ubiquitous in nature and have become a research topic in many 
areas of physics, ranging from fluid dynamics [6] to cold atoms [7]. OVs have found 
useful applications in optical manipulation of small particles [8], in optical imaging 
[9], as potential information carriers in data transmission [10], in interferometry 
[11], high-resolution microscopy and lithography [12], in spectroscopy [13, 14], 
just to mention a few areas.

2. BASIC INTERACTIONS OF OPTICAL VORTICES

Fig. 1 is visualizing the basic interaction scenarios between two OVs nested 
on a common bright background beam. In the upper left panel of fig. 1 the spiral 
phase profile of a singly charged OV is shown. The directions of the vectors in 
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the respective vector plot shown in the frame below clearly indicate its rotation on 
the background beam. The bottom left frame in the same figure is an experimentally 
obtained intensity distribution of such an OV. Since it does not change its position 
on the background beam, the dashed line crossing all experimental frames could be 
regarded as a reference for the rotation/translation of OV pairs of equal/opposite 
TCs. In the middle column of frames in fig. 1 we show that the two helical phase 
profiles of two equally charged OVs (upper frame) lead to an overall helicity of the 
phase (middle frame) and, as a consequence, to the rotation of the OV pair with 
respect to their “center of gravity” (bottom frame). In the case of OVs with opposite 
TCs equal to 1 and -1, there is a phase gradient along a line perpendicular to the 
line connecting the OV cores (right column, vector plot). Hence, the OV pair is 
translating on the background beam, which can be clearly seen in the experimental 
result (lower right frame in fig. 1). 

Fig. 1. Phase profiles (upper row) and vector plots (middle) of a single OV (left column), of 
two OVs with equal unit topological charges (middle column), and of two OVs with opposite unit 

topological charges (right column). Lower row – experimental data obtained at an initial OV-to-OV 
separation 57 pix. and at a distance of free space propagation of 32 cm

3. ARITHMETICS WITH THE TC OF A SINGLE OPTICAL VORTEX

The intensive research in the field of singular optics has shown that OV 
beams can be generated from incident chargeless optical beams by means of 
diffractive optical elements (DOEs) with embedded phase dislocations, such 
as spiral phase plate, helical axicon, and spiral zone plates [15] as well as with 
fork-shaped gratings [16‒19] and spatial light modulators. Here we report results 
obtained by using the last two approaches. The underlying physics in manipulating 
the TCs of OVs is based on the results published in [20, 21]. The authors have 
shown theoretically that in the process of diffraction of Laguerre-Gaussian beam 
(with radial mode number equal to zero and with an arbitrary azimuthal mode 
number l), by a fork-shaped grating (with an integer forked dislocations p), in the 
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positive and negative m-th diffraction order, the diffracted beam carries topolog-
ical charge s which is determined as an algebraic sum s = l + mp or s = l − mp, 
respectively. Here we provide experimental evidences (fig. 2) for this rule (visu-
alised in fig. 3) [22]: The final TC of the vortex is equal to the TC of the incident 
beam plus the diffraction order (with its sign) times the TC encoded in the binary 
grating. As a consequence from this transformation rule, OV TC can be erased 
in one case when the resultant TC equals to zero. As a result, in the focal plane 
of a lens (and in the far field) a well formed single bright peak is formed at the 
former position of the OV dark core. Some experimental data [22] are shown in 
figs. 4 and 5. In order to quantify how much these beams differ from Gaussian 
beams we used Gaussian fits to the respective beam cross-sections The normalized 
root mean square deviation between each pair of curves was found to be between 
0.034. The respective correlation coefficients varied between 0.95 and 0.98 thus 
indicating high-quality Gaussian beam shapes. The theoretical results [20, 21] for 
the algebraic transformation of the TCs of the OVs and for the vortex ring radii of 
the transformed beams vs. final TC are also found to be in an excellent agreement 
with the obtained experimental data.

Fig. 2. Experimental setup: Nd:YVO4 laser 
emitting at λ = 532 nm, BS – beam splitters. 
CGH1, CGH2 – binary computer-generated 

holograms, D – diaphragms, L – focusing lens 
(f = 100 cm), M – flat mirrors. CCD camera 

located at the beam waist

Fig. 3. Sketch of the transformation rule of the 
topological charge of the incident OV beam 
in the case of l = 2 and p = 1. See the text for 

details. The larger the dark spot, the higher the 
topological charge of the vortex
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Fig. 4. Power density distributions and respective interferograms for identifying the resultant OV 
TCs (respective right columns)of the OV beams diffracted in different orders m of CGH2 encoded 

with an singly-charged OV (p=1) see figs. 2 and 3. Case A: l = 2 and Case B: l = 3

In the interferograms recorded with inclined plane waves the location and the 
magnitude of the OV TC can be easily recognized by the fork-like splitting of one 
interference line in q lines. In this case the TC is equal to q-1. The change in the 
direction of the splitting means an inversion of the sign of the TC. In fig. 4 we 
present some of the experimental data, from which the radial beam’s cross-sections 
shown in fig. 5 are extracted. The data confirm that in the absence of a phase 
dislocation a well formed bright beam is recovered in the far field. Underlying 
preceding analysis and experiments devoted to the diffraction of a Gaussian beam 
by a four-sector binary grating are published in [23]. 

Fig. 5. Normalized radial cross-sections of the OV beams experimentally generated
 in Case A (p = 1 and l = 2; left graph) and in Case B (p = 1 and l = 3; right graph)

 in different diffraction orders and their TCs
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Being encouraged by the results in [22, 23], and using the same experimental 
scheme (see fig. 2), we studied the diffraction of an OV beam from a computer-
generated hologram (CGH) encoded with crossed one-dimensional phase 
dislocations with phase jumps of π between them [24]. The essential part of the 
used binary CGH is shown in the left frame in fig. 6. The amplitude profile of the 
beam diffracting in ±1-st diffraction order is X-modulated in azimuthal direction, 
with a central dark non-vortex core. Thereafter its diffraction from a CGH of an OV 
is studied. Both the theoretical model (fig. 6, middle frame) and the experimental 
data (fig. 6, right) confirm that this beam is transformed in the focal plane of a 
converging lens (artificial far field) into an array of five-vortex spot pattern [23].

Fig. 6. Left: Binary computer-generated hologram (CGH) of a beam carrying crossed 1-D phase 
dislocations. Middle: Simulation of the derived theoretical result confirming that the diffraction of 
the X-shaped beam from a CGH of an OV results in a five-spot focal pattern. Right: Experimental 

result confirming the theoretical prediction

As seen in the interference patterns presented in fig. 6, the array consists of a 
central vortex (which value and sign of its TC depend on the diffraction order m; 
in the presented case |m| = 1) and four “satellite” vortices situated in the apices of 
a rotated square which signs of the TCs are inverted and depend on the diffraction 
order m, in which they are nested. In a wide range of diffraction orders the data 
obtained experimentally confirmed the presence of the vortices (also the values and 
signs of their TCs) as predicted in [23].
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4. MANIPULATION THE TOPOLOGICAL CHARGES OF LARGE OPTICAL 
VOTEX LATTICES

4.1. EXPERIMENTAL APPROACH

The experimental setup (fig. 7) involves a green pump beam from a frequency-
doubled continuous-wave Nd:YVO4 laser. It illuminates the reflective liquid-crystal 
spatial light modulator SLM1. This first modulator modulates the phase of the input 
Gaussian beam (and, as a consequence, also its amplitude/intensity) and redirects 
it to a second spatial light modulator SLM2 of the same type. The additionally 
modulated singular beam reflected from SLM2 is focused by a lens L (f = 100 cm) 
onto a CCD camera chip with a sensitive area of 7.1×5.4 mm (1600×1200 pix.). 
The distance between SLM2 and the lens is 95 cm. For diagnostic purposes, a 
reference beam is split off the laser beam before SLM1 by a beam splitter (BS1). 
The object and the reference beams are recombined by a second beam splitter (BS2) 
to interfere at the CCD camera chip. Power density distributions of the resulting 
optical beams and the respective interference patterns are recorded by the same 
CCD camera by blocking/unblocking the reference laser beam, while keeping the 
lens and camera positions unchanged. SLM1 and SLM2 are aligned parallel with a 
distance of 49 cm. The angle of incidence of the green laser beam is ~4 deg.

Fig. 7. Experimental setup. Nd:YVO4, continuous-wave frequency-doubled laser emitting at a 
wavelength λ = 532 nm; BS, beam splitters; M, flat silver mirrors; SLM ‒ reflective spatial light 

modulators (model Pluto, Holoeye Photonics); L, focusing lens (f = 100 cm); CCD, charge-coupled 
device camera

4.2. NUMERICAL MODEL

As seen from fig. 7, the propagation of the laser beam in the object arm of the 
interferometer is linear. Its evolution was numerically simulated by using the linear 
model equation for the slowly-varying optical beam envelope amplitude E

                                  . (1)
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Here T is the transverse part of the Laplace operator, LD = ka2 is the diffraction 
length of an individual OV, and k is the wave number in air. In a computational 
window spanning over 1024×1024 pix. the half width at the 1/e2 intensity level 
of the bright background Gaussian beam was 205 pix. Using SLM1, we created a 
single OV by pure phase modulation and recorded its profile just behind SLM1 at 
the position of SLM2. From such data we deduced that the SLM1-to-SLM2 distance 
corresponds to 1.5LD and the SLM2-to-lens distance – to 3.0LD. The transmission 
phase function T(x,y) of a thin lens with a focal length  f

                             (2)

was added to the phase distribution in the plane of the lens L (see fig. 7) and the 
beam evolution was numerically followed to the focal plane 41LD behind the lens. 

4.3. SQUARE OV LATTICES [25]

An ultimate numerical proof of the idea to manipulate the far field beam 
profiles by manipulating the TCs of large OV lattices would be, if a square OV array 
consisting of hundreds of OVs with alternating TCs is generated by SLM1 and all 
topological charges are set to zero (i.e. “erased”) by SLM2. Thus, a Gaussian beam 
should be recovered in the focus of the lens. This is clearly demonstrated in fig. 8 
for vortex core-to-core separation 41 pix.

In the high-intensity region, the phase is almost flat as it should be when an 
unperturbed Gaussian beam is focused. We attributed the small deviation from 
perfect flatness to a numerical deviation of the modeled focal position from the 
“real” one due to the final step size.

Fig. 8. Numerical data [25]. Far field intensity distributions (solid curve) of recovered Gaussian 
beam and its respective phase profiles (dashed curve) when all TCs of a large square OV array are 

erased by a second (oppositely charged) vortex array. The vortex array node spacing is 41 pix.



20

In fig. 9 we show [25] numerical simulations for the creation of a large square 
lattice of OVs with alternating TCs in the case of array node spacing equal to 
41 pix. The intensity of the background beam illuminating SLM1 (see fig. 7) is 
shown in frame (a). The phase distribution sent to this modulator is visualized in 
frame (b) and the simulated resulting intensity distribution just in front of SLM2 
is depicted in frame (c). When a phase distribution with inverted signs of the TCs 
is sent to SLM2, the entire array of singularities situated in squares is erased and 
the resultant phase profile is modulated but does not contain phase discontinuities 
anymore (frame (d)). As a result of the subsequent linear propagation before the 
focusing lens (see fig. 7), the dark beam contrast is gradually decreased (frame 
(e)). Due to the added phase profile in the plane of the lens (frame (f)) the beam 
is focused. The resultant intensity (frames (g, i)) and phase profiles (frames (h, j)) 
of the recovered Gaussian beams in the artificial far field and 6.5LD behind it (i, 
j) are shown on the right hand side of fig. 9. In fig. 9h one can recognize that the 
phase front of the Gaussian beam in the focus of a lens is flat, as known from the 
theory. Behind the focus it becomes spherical, which is due to the additional 6.5LD 
diffraction-influenced propagation behind the lens focus.

Fig. 9. Numerical simulations [25] for array node spacing 41 pix. Intensity of the background beam 
(a) illuminating SLM1, phase distribution sent to this modulator (b) and resulting intensity distribution 
just in front of SLM2 (c). After the inverted (in signs) TC phase distribution erases the whole array of 
square singularities, the phase profile is modulated but does not contain phase discontinuities (d) and, 
in front of the focusing lens, the dark beam contrast gradually decreases (e). The lens (phase profile 
just behind it shown in frame (f)) focuses the beam. Intensity (g, i) and phase profiles (h, j) of the 

recovered Gaussian beams in the artificial far field (g, h) and behind it (i, j)

Let us first describe the result of the far-field structure obtained when a large 
square optical vortex lattice is created only by one of the spatial phase modulators 
at a node spacing of 41 pix., while the second modulator is switched off acting as 
a mirror. In fig. 10 we show [25] numerical results (frames (a)-(f)) and compare 
them with experimentally observed ones ((g) and (h)). The calculated far-field 
intensity (frames (a) and (c)) and phase profiles (frames (b) and (d)) indicate that 
the observed four peaks situated in the apices of a rotated quadrate have flat phases 
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in the lens focus (frame (b)) and spherical phase profile behind it (frame (d)). 
The intensity distributions shown in frames (e) and (f) again correspond to far-
field intensity profiles of large square optical vortex lattice but at a smaller node 
separation of 21 pix. Frames (a) and (e) provide a nice visualization of the well-
known feature of the Fourier transformation performed by a thin lens, known as 
the Similarity theorem: “wide” functions in the time (space) domain correspond to 
“narrow” functions in the (spatial) frequency domain. This numerical result is in 
an excellent agreement with the experimental observations in this work and could 
serve as a control parameter for potential applications of such focused structures. 
In fig. 10g,h we show experimental results for OVs separated by 41 pix. encoded 
on phase modulator SLM1. The comparison between frames (g) and (e) shows 
that in the experiment a weak central peak is present too, which is probably due to 
the discrete structure of the modulator array. The interference stripes in frame (h) 
are parallel across the four bright peaks indicating flat phases as suggested by the 
numerical simulation shown in frame (b).

Fig. 10. Single square OV array – theory (a-f) vs. experiment (g, h). Far-field intensity (a, c, e-g) 
and phase (b, d) profiles of an square OV array, and respective interference pattern (h) for node 

spacing 41 pix.

In view of the above, it is natural to arrive at the idea to also use another 
known feature of the Fourier transformation, the Convolution theorem: The Fou-
rier transform of the product of two functions is the convolution of their Fourier 
transforms. The experimental realization with two spatial phase modulators is 
simple: Let us assume that SLM1 and SLM2 add two different phase profiles 
to the initially flat phase of the incoming laser beam. The thin lens performs a 
two-dimensional Fourier transformation and in its focus we have to expect the 
convolution of the Fourier transformations of the phase and amplitude structures 
encoded by SLM1 and SLM2 separately. It is known that an OV nested symmet-
rically on its own background beam remains an OV in the focus of the lens. In 
view of the above it is not surprising that we observed the four peaks originating 
from the large OV array with an OV nested in each of the four bright peaks (see 
fig. 11a) when a single OV is encoded on SLM 2 and aligned such that it erases 
the TC of one OV from a large OV lattice produced by SLM1 in the artificial far-



22

field. Using the same base far-field structure originating from the large OV array 
encoded on SLM1, on SLM2 we encoded one-dimensional and quasi-two-di-
mensional spatial phase dislocations. The first line of intensity profiles in fig. 11 
presents simulated far-field images resulting from combinations of the phase pro-
files of a large square array of OVs with alternating TCs with the phase profiles of 
an OV (fig. 11a), of an 1-D spatial phase dislocation (fig. 11b), and of a crossed 
1-D (i.e. quasi-2-D) spatial phase dislocation (fig. 11c). Further, following the 
same ordering, we present the respective intensity (second row) and interference 
profiles of the experimentally observed far-field structures (last row). The pres-
ence of OVs is easily recognized in column ((a), last row) of fig. 11 by the four 
fork-like splittings of interference lines crossing the four bright peaks. The same 
upward direction of these splittings confirms that all 4 OVs have the same TCs. 
The interference patterns in fig. 11b and fig. 11c, last row, contain interference 
lines shifted along a line (a) or along two crossed lines (b) by a half of a period, 
thus indicating 1-D and quasi-2-D phase shifts of π and, hence, confirming the 
presence of spatial phase singularities.

Fig. 11. Far field intensity profiles (first two rows) of square OV lattices structured by adding an OV 
with an opposite TC (a), one-dimensional dark beam (b), and crossed 1-D dark beams (c) [25]. First 

row – numerical results, last two rows – experimental data. See text for details

We confirmed that the results remain the same when the ordering of the phase 
distributions projected on the modulators is changed. Furthermore, they remain 
similar after changing the OV lattice node spacing. The TCs of the OVs placed in 
the four bright focal peaks in case (a) in fig. 11 can be reversed by reversing spatial 
phase profiles projected on the spatial light modulators. 
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In fig. 12 the upper row of frames (a)-(d) we shows results for a high-density 
square-shaped OV array with array node spacing = 21 pix. The phase profile of 
this array was encoded numerically on one of the SLMs. The resulting intensity (a) 
and phase profiles (b) just in front of the focusing lens L (see fig. 7) clearly show 
the result of some additional background beam modulation due to the simulated 
diffraction at a distance z = 3Ldiff. One elementary cell of this OV lattice can be 
considered as composed by four OVs with identical unit TCs located in the apices 
of a square and one additional OV with an inverted sign nested in its center (see 
marked OVs in figs. 12e,f). After adding the respective phase of the focusing lens 
(fig. 12c) to the phase of the dense OV lattice (fig. 12b), the simulated four-spot 
far-field bright beam structure in the focal plane is shown in fig. 12d. In frames 
(e)-(h) of fig. 12 we keep the same ordering of the intensity and phase profiles, but 
this time for the case of square OV lattice of low density (= 121 pix.). Because 
the OVs in this case are well separated, the intensity modulation is in the form of 
grey rings surrounding each OV in frame (e), not as the modulation between the 
OV lattice nodes in frame (a) in fig. 12. Frames (c) and (g) are the same, since 
the action of the same focusing lens is modelled. The comparison between the 
far-field intensity profiles (d) and (h) is a clear demonstration of the validity of the 
already mentioned Similarity theorem.

Moreover, the vortices in frame (e) are obviously not centered with respect to 
the computational window, but the Fourier-transformed result (frame (h)) is. This 
is a nice visualization of the validity of the Shift theorem for the Fourier transfor-
mation. As the readers will see later, these numerical results are in an excellent 
agreement with the experimental observations. Therefore, the array node spacing 
= 21 pix. and = 121 pix.) of the square-shaped OV arrays are projected. This 
multi-spot focal array (ordered in a square composed of squares) is the typical 
one obtainable by mixing square OV arrays with different node spacings. The 
particular result corresponds to the cases separately illustrated in frames (a)-(d) 
and (e)-(h). The particular ordering on the phases on the SLMs was found to have 
negligible influence on the result. In the intensity profile denoted with the used 
magnification factor x1, one of the small-scale structures consisting of four peaks 
is marked. For better visibility the calculated phase profiles of these four beams 
are shown in the lower right frame with a magnification factor of x2.5. The en-
circled phase of two of the bright beams is obviously flat. Since black and white 
denote phases 0 and 2π, in the other two encircled phase areas phase singularities 
are absent too. 
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Fig. 12. Numerical results. High-density (= 21 pix.) square-shaped OV array (a) and its phase 
profile (b) at a distance z = 3Ldiff  where the focusing lens (f = 100 cm corresponding to z = 41Ldiff)
is located. The resulting focal array is shown in frame (d). The respective numerical results for a low-
density (= 121 pix.) OV array are shown in frames (e)-(h). Right: Multi-spot focal array simulated 

by creating the high-density OV array at the input plane of SLM1 (z = 0) and the low-density OV array 
by SLM2 at z = 1.5Ldiff. The scaling factor x1 in the intensity distribution is mar-ked to denote that the 
respective phase profile is magnified by a factor of 2.5 for better visibility. Circles – locations of the 

four peaks composing one element of the small-scale structure of the focal array

In fig. 13 we present experimental results which are in excellent agreement 
with the numerical ones. The close inspection of the interference pattern (frame 
(b)) shows parallel interference lines across the bright beams, which indicate that 
their phases are flat, as it should be in a focus of a lens. Nevertheless, we applied 
the four-frame technique for interferogram analysis [26, 27] in order to obtain 
quantitative information for the (horizontal) phase profiles of the beams in the sub-
array marked in frame (b) in fig. 13. The respective data shown in the graph confirm 
that, with a reasonable accuracy, the reconstructed phases of the sub-beams are flat. 

Fig. 14 summarizes the experimental data for the typical multi-spot focal bright 
beam arrays obtained when both SLMs are programmed with different square-to-
square vortex array node distances. The array node spacings used in calculating 
the used phase profiles are marked in the same figure. As mentioned, the particular 
ordering of the phases on the SLMs has minor influence on the small-scale and on 
the large-scale structure of the multi-spot focal arrays. The large-scale structure 
is coming from the OV lattice with the smaller array node spacing, whereas the 
small-scale structure of the observed pattern results from the OV lattice with larger 
array node spacing. Weak influence on the noise due to the OV diffraction between 
the SLMs can be estimated only. The lower frames show the expected result when 
all OVs of the OV array are erased: Independent on the particular node spacing, 
a well formed single Gaussian bright peak is recovered in the focal plane (and in 
the artificial far field). The results show once again that the ratio between the OV 
lattice node spacings can be used as a control parameter for forming the desired 
multi-spot focal array. The data presented in fig. 14 are clear manifestation of both 
the Similarity and the Convolution theorems for the Fourier transformation. 
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Fig. 13. Experimental results. Power density distribution of the observed multi-spot focal array (a) 
by programming SLM1 with the phase of the OV lattice with = 121 pix. and SLM2 – with this 

corresponding to  = 21 pix. Frame (b) – the respective interferogram. The horizontal phase profiles 
of the four marked peaks in frame (b) are reconstructed in the graph to the right

Fig. 14. Experimental results. Different focal arrays of bright beams observed by mixing two OV 
lattices of different square-to square node spacings. The data show that the disposition of the peaks 

and their relative intensities remain the same when the ordering of the phase distributions on the 
SLMs is inverted. See the text for details

In fig. 15 we show experimentally that the generated multi-spot focal arrays 
of bright beams can be additionally structured by nesting an OV in each of 
these peaks. We prefer to demonstrate in details only this possibility, although 
1-D and quasi-2-D dark beams can be formed in each of the peaks as done, in 
another configuration, in [25] (see fig. 11). Each experimentally recorded intensity 
distribution is accompanied by its respective interference pattern. In these patterns 
the location of the additionally nested OVs and their TCs can be easily recognized 
by the typical (for an interference with a plane wave) fork-like splitting of one 
interference line. Characteristic for the presented results is that in one interference 
pattern all fork-like splitting are oriented in the same direction, i.e. all inscribed 
OVs have the same sign of the TCs. The pairs of frames (a) and (b) indicate that 
embedding of a singular beam in each bright component of the multi-spot structure 
is possible in all cases shown in fig. 14. The pairs of frames (c) and (d) provide 
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evidence for an additional possibility for creating other multi-spot focal arrays 
when OV lattices of the same node spacing are used but, this time, at a controllable 
non-zero spatial offset. Additional structuring of the resulting focal peaks with 
singular beams is applicable in this case too.

4.4. HEXAGONAL OV LATTICES [28]

In this subsection we demonstrate numerically and experimentally the formation 
of another eight different basic structures consisting of bright beams with flat phase 
fronts in the focus of a lens (i.e. in the artificial far field) [28]. In all considered cases 
the used input structure is a large, stable, hexagon-shaped optical vortex (OV) array 
composed of vortices with alternating topological charges. Following the style of 
presentation used for figs. 9 and 12, in fig.16 we show numerical simulations for 
the creation of a large hexagonal lattice of OVs with alternating TCs in the case of 
array node spacing equal to 41 pix.

Fig. 15. Experimental results. Additional structuring of multi-spot focal arrays by erasing the TC 
of one OV in one of the OV arrays. Frames (a) and (b) show examples for an additional focal array 

structuring at different node spacings of the mixed OV lattices by imposing an additional OV. 
Pair of frames (c) and (d) – focal beam structuring when OV lattices of the same node spacing are 

shifted by one (e) and by a half of the square lattice period (f)

The intensity profile of the background beam illuminating SLM1 (see fig. 7) 
is shown in frame (a). The phase distribution sent to this modulator is visualized in 
frame (b) and the simulated resulting intensity distribution just in front of SLM2 
is depicted in frame (c). When a phase distribution with inverted signs of the TCs 
is sent to SLM2 in an on-site alignment, the entire array of singularities situated 
in hexagons is erased and the resultant phase profile is modulated but does not 
contain phase discontinuities anymore (frame (d)). As a result of the subsequent 
linear propagation before the focusing lens (see fig. 7), the dark beam contrast 
is gradually decreased (frame (e)). Due to the added phase profile in the plane of 
the lens (frame (f)) the beam is focused. The resultant intensity (frames (g, i)) and 
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phase profiles (frames (h, j)) of the recovered Gaussian beams in the artificial far 
field (g, h) and 6.5LD behind it (i, j) are shown on the right side of fig. 16. In fig. 16h 
one can recognize that the phase front of the Gaussian beam, in the focus of a lens, 
is flat, as known from theory. Behind the focus it becomes spherical, which is due 
to the additional diffraction-influenced propagation behind the lens focus. Some 
6% of the total computational area is shown in each frame in fig. 16 spanning over 
(-6,6) arbitrary units.

In fig. 17 we show numerical results (frames (a)-(d)) and compare them with 
experimentally observed ones (frames (e)-(h)). The calculated far-field intensity 
(frames (a) and (c)) and phase profiles (frames (b) and (d)) indicate that the 
observed three dominating peaks situated in the apices of a triangle have flat phases 
in the lens focus (frame (b)). This triangle-like structure of bright peaks is built in 
(inscribed) in a rotated triangle-like structure of gradually less intense beams. The 
far-field phase profiles of these three additional beams appeared again to be flat. 
The intensity distributions shown in frames (c) and (d) again correspond to far-field 
intensity and phase profiles of large hexagonal optical vortex lattice but at a smaller 
node separation of 21 pix. Frames (a) and (c) provide a nice visualization of the 
well-known and already mentioned Similarity theorem.

Fig. 16. Numerical simulations for hexagonal OV lattice with array node spacing 41 pix. [28]. 
Intensity of the background beam (a) illuminating SLM1, phase distribution sent to this modulator 

(b) and resulting intensity distribution just in front of SLM2 (c). After the whole array of 
hexagonal-ordered singularities is erased, the phase profile is modulated but does not contain phase 
discontinuities (d) and, in front of the focusing lens, the dark beam contrast gradually decreases (e). 
The lens (phase profile just behind it shown in frame (f)) focuses the beam. Intensity (g, i) and phase 
profiles (h, j) of the recovered Gaussian beams in the artificial far field (g, h) and 6.5LD behind it (i, j)

This numerical result is in an excellent agreement with the experimental 
observations in [28] and could serve as a control parameter for potential applications 
of such focused structures. In fig. 17e,f we show experimental results obtained with 
OVs separated by 41 pix. encoded on phase modulator SLM1. Note that the orientation 
of the images in frames (e) and (f) differs by 180 deg. because of the inversion of the 
signs of all TCs of the OVs of the hexagonal lattice. The comparison between frames 
(c) and (e) shows that not only the peak dispositions, but also the relative intensities 
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of the observed six peaks are qualitatively similar. The interference stripes in frames 
(g) and (h) are parallel across all bright peaks indicating flat phases as suggested by 
the numerical simulation shown in frames (b) and (d).

We were able to additionally host an OV, an 1-D or a quasi-2-D singular beam 
in each of these three dominating peaks by deleting one OV of the array or by 
adding the singular phase profiles characteristic for the aforementioned 1-D and 
quasi-2-D singular beams. Since the results are similar to these shown in fig. 11 
except the disposition of the peaks in the apices of a triangle, we refrain from 
showing them here. Instead of this, we prefer to show other possible approaches 
for a controllable shaping of bright structures in the focal plane of a lens. The far-
field structures shown in fig. 18a-f are obtained by sending two identical phase 
distributions of large hexagonal OV lattices to both SLM1 and SLM2. Off-site 
alignment here means that the phase distribution at one of the modulators is shifted 
later on vertically (frames (a)-(c)) or horizontally (frames(d)-(f)) with respect to 
the phase distribution on the other modulator at a half of the lattice period. One 
can clearly see in the simulation (frame (a)) that among the 6 bright peaks of the 
hexagon two are slightly dominating. This is confirmed also by the measurement 
shown in frame (b).

Fig. 17. Single hexagonal OV array – theory (a-d) vs. experiment (e-h) [28]. Far-field intensity 
(a, c, e, f) and phase (b, d) profiles of a hexagonal OV array, and respective interference patterns 
(g, h) for node spacing 41 pix. (a, b) and 21 pix. (c, d). In the experiment (frames (e-h)) the node 

spacing is 41 pix. See the text for details

In the second row of frames in fig. 18 we show calculated (d) and experimentally 
obtained (e) far-field intensity distribution consisting, again, of 6 dominating bright 
peaks located in the apices of a hexagon. They are obtained by a horizontal off-set 
of the described type by a half of the lattice period. The formed peaks here are of 
nearly equal intensity. The parallel interference stripes in the respective interference 
pattern (c) and (f) clearly indicate that the observed bright peaks in both cases have 
flat phase fronts. 
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Fig. 18. Far field intensity profiles (a, b, d, e) modeled numerically (a, d) and recorded 
experimentally (b, e) when the OV lattices are displaced at a half of the lattice period vertically 

(a-c) or horizontally (d-f). Frames (c) and (f) show the respective interference patterns. Node spacing 
41 pix in the simulations and 151pix. in the experiment

The relatively small differences in the intensities of the peaks in frames (a) 
and (d) (and frames (b) and (e), respectively) are probably due to additional small 
phase shifts between the lattices projected on SLM1 and SLM2, however we will 
refrain from speculating on this. Spectacular far-field beam reshaping resulting 
from the interaction between the two hexagonal OV lattices when all TCs of all 
OVs are doubled is shown in fig. 19 [28]. Columns (a) and (b) contain numerical 
results obtained for lattice node spacing 41 pix. and 21 pix. Column (c) shows 
the respective experimental result. The reshaped array of bright beams can be 
described as an equilateral triangle. Each cathetus of this triangle is marked with 
5 bright peaks. In the centre of the large triangle an additional small equilateral 
triangle marked with 3 bright peaks is inscribed. This description, even somewhat 
cumbersome, adequately describes the structure consisting of 15 peaks. Regarding 
the relative beam intensities of the peaks within this structure, the situation 
predicted numerically (fig. 19a,b) and observed experimentally (fig. 19c) is even 
more interesting. Within the “solid” equilateral triangle marked with 15 bright 
peaks an inverted equilateral triangle marked with 6 peaks seems to be inscribed.
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Fig. 19. Far field intensity profiles (a-c) modelled numerically (a, b) at lattice node spacing 
41 pix. (a) and 21 pix. (b) and the respective phase profiles (lower frames). In column (c) the 

experimentally recorded intensity distribution (up) and the respective interference pattern are shown 
(down) for node spacing 151pix. [28]

4.5. MIXED SQUARE-SHAPED AND HEXAGONAL OV LATTICES

In this subsection we will start directly describing some experimental results 
which, nevertheless, are found to be in an excellent agreement with the numerical 
simulations. In frame (a) of fig. 20 the OVs constituting one elementary cell of 
the hexagonal lattice are encircled in order to clearly show the large ratio between 
the node spacings of the square and hexagonal lattices (a, b) and the broadening 
of each one of the OVs of the square lattices propagating from SLM1 to SLM2 as 
compared to the width of the newly-born OVs just after SLM2. The diffraction 
they experience until reaching the focusing lens is clearly seen in frame (b). 
Experimentally recorded far-field intensity distribution in fig. 20 too. As seen in 
frame (e), the experimental data perfectly match the numerical ones (frame (c)). 

Moreover it is confirmed again, (numerically and experimentally) that the 
small-scale triangular structures of sub-beams can be rotated by 180º by inverting 
the signs of all TCs of the OVs constituting the hexagonal lattice or by changing the 
order of the creation of the individual lattices on the SLMs. The detailed inspection 
of the numerically obtained phase profile given in frame (d) shows that all bright 
sub-peaks have flat phases. This is in agreement with the observed parallel 
interference stripes in the experiment (frame (f)) when the beam in the reference 
arm of the interferometer (fig. 7) is slightly inclined with respect to the beam in its 
object arm. 
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Fig. 20. Numerical simulations (a-d) and experimental results (e, f). Square-shaped OV array with 
a lattice constant 41 pix. is encoded on SLM1. Hexagonal OV lattice with lattice node spacing 
of 101 pix. is encoded on SLM2. Intensity distribution just behind SLM2 (a) and in front of the 

focusing lens L (b). Calculated far-field intensity distribution (c) and its respective phase profile (d). 
Experimentally recorded intensity distribution (e) and interference pattern (f) of the mixed lattices 

for the same ratio between their lattice constants. Dashed triangle – small-scale structure of the 
square-shaped large-scale beam structure

In fig. 21 we show different experimentally recorded far-field bright beam 
intensity distributions obtained by varying the node spacing sq of the square-
shaped (row (a)) or hex of the hexagonal OV lattice (row (b)). These data are 
demonstrating the change in the symmetry and in the size of the far-field beam 
structures by changing the vortex-to-vortex node spacing of one of the latticess 
(frame (e)) and interference patterns (frame (f)) of such mixed lattices are shown, 
keeping the respective spacing for the other lattice unchanged. In case (a), the 
hexagonal lattice node spacing is hex = 41 pix. One can see again that for sq = 21 
pix. (row (a), left frame) the far-field beam profile has the small-scale structure 
resembling an equilateral triangle with three dominating peaks situated in its 
apices. In other words, the small-scale structure is the one of the hexagonal OV 
lattice, which has a two-fold larger node spacing, i.e. hex = 41 pix. The large-scale 
focal structure resembles a rhomb with the aforementioned triangular small-scale 
structures in its apices. In other words, the large-scale structure is the one of the 
square OV lattice with the smaller node spacing sq = 21 pix. In the other limiting 
case shown in the most right frame of fig. 21a, hex = 41 pix. is kept unchanged 
and sq is increased from 21 pix. to 151 pix., whereas the large-scale structure is 
this of the hexagonal lattice with the smaller hex = 41 pix. The results in fig. 21 
clearly indicate that = sq/hex could serve as a control parameter for generating 
the desired focused structure.



32

Fig. 21. Experimentally-recorded far-field beam reshaping by varying the node spacing of the 
square-shaped (a) or of the hexagonal OV lattice (b). In case (a) the hexagonal lattice node spacing 

is hex=41 pix. and =sq/hex varies between 0.5 and 3.7. In case (b) sq=21 pix. and  varies 
between 0.5 and 0.17. See the text for details

5. TRANSFORMATION OF THE TCs IN NONLINEAR PROCESSES

We will very briefly describe our results on the transformation of the TCs of 
OVs in the second- and third-order perturbative nonlinear parametric processes of 
second harmonic generation (SHG) and four-wave frequency mixing (FWFM). In 
the process of SHG the TCs of the vortices become doubled [29]. Our analyses and 
experiments devoted to the diagnostics of pulse front tilts of femtosecond laser pulses 
[30] lead us to the idea to use an inverted field interferometer with/without a vortex 
lens on its input in order to switch between background-free and interferometric 
mode of measurement without any realignment of the autocorrelator. Experiments 
on this topic are under way. We have demonstrated [31] broadband cascaded mixing 
of vortex beams in a self-focusing Kerr medium. The nonlinear generation process, 
although not phase matched, was efficient enough to allow for observation of vortices 
over a bandwidth larger than 200nm. This [31] constituted the first measurement of 
topological charge for a multiply cascaded four-wave mixing process with vortex 
beams. Topological charge conservation for the nonlinear wave mixing process is 
found to be fulfilled, and decay of higher-order vortices into fundamental vortices 
has been observed [32] due to instability arising from the nonlinear self-focusing. 
In [33] we showed for the first time that optical vortices can be generated in the 
extreme ultraviolet (XUV) region using high-harmonic generation. The singularity 
impressed on the fundamental beam survives the highly nonlinear non-perturbative 
process. In a subsequent experiment [34] this was confirmed and it was proven that 
the TC of the XUV OV scales with the order of the high harmonic.
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6. CONCLUSION

In this work we presented an overview of the possibilities for significant far-
field beam reshaping by mixing square-shaped and hexagonal optical vortex lattices, 
as well as additional research toward the nonlinear behavior and transformation 
of an OV. Each of the singular lattices used here is composed of vortices with 
alternating TCs. The results may appear particularly interesting, as a new degree of 
freedom, for modifications in stimulated emission depletion (STED) microscopy, 
for extending the possibilities of generating singular higher-order vector fields [35], 
for controllable writing of parallel optically-induced waveguide structures e.g. in 
(photorefractive) nonlinear media (see, e.g., [36]) and may appear applicable for 
orbital angular momentum multiplexing of information [37] for data transfer using 
complex optical fields [38–40].
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