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Асен Дацев. Върху проблема за потенциалните бариери и решаването 
на уравнението на Шрьодингер

Задачата за потенциалните бариери се използва активно в класическата вълнова оптика, 
но е особено важна за вълновата механика. Тя показва ясно разликите между класическата и 
вълновата механика. Много задачи от последната могат да бъдат решени приближено чрез из-
ползване на потенциални бариери. Например кривата на потенциалната енергия в областта, в 
която потенциалът се променя плавно, може да се замени с множество стъпаловидни бариери 
с проста форма, най-често – правоъгълна. В по-сложните случаи, в които имаме няколко плав-
ни бариери, всеки от тях може да се замести с редица от прости правоъгълни бариери. Тогава 
решаването на задачата се свежда до многократно пресмятане на прост правоъгълен бариер. 

Ние развиваме тази идея – заместването на даден плавен бариер със серия от правоъгъл-
ни бариери. Задачата се решава лесно в едномерния случай. Използвайки векторни означе-
ния, ние намираме матрицата на прехода, която свързва амплитудата на прехода от падащата 
вълна към отразената и преминалата вълна. 

Прилагането на този метод води лесно до известното решение на вълновото уравнение 
за линеен потенциал, което се изразява чрез функциите на Бесел. 

За задачата с n тела се получават подобни 3n матрици, играещи същата роля. 
Накрая ние използваме този метод на приближено представяне на потенциалния бариер 

за решаване на едномерни задачи с релативистичното уравнение на Дирак. 

Assene Datzeff.  ON THE PROBLEM OF POTENTIAL BARRIERS AND THE SOLUTION 
OF THE SCHRÖDINGER EQUATION

 The problem of potential barriers is in active use in Classical Wave Optics, but it is of particu-
lar importance in the Wave Mechanics. This problem clearly outlines certain differences between 
Classical Mechanics and Wave Mechanics. Many problems of the latter can be solved approxi-
mately by the use of potential barriers. One replaces, for example, the potential energy curve in a 
domain where the potential varies a lot by a potential wall and also a potential hill by a barrier with 
simple shape, mostly rectangular. In other cases, where the potential curve forms series of potential 
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hills, one can replace the latter with series of simple barriers. One should then repeat many times the 
calculations concerning a simple barrier. 

We develop this idea – of replacing given barrier with a series of rectangular barriers. The 
problem is easy to pose in the case of motion in one dimension. Using the vector notations, we have 
found a transformation matrix which connects the amplitudes of the incident wave with those of the 
reflected and of the transmitted waves. 

The application of this method in the case when the potential function is linear gave us very 
easily the known solution of the wave equation, expressed as Bessel series. 

For the problem of n bodies one has to write 3n matrices of the same form. 
In the end, we have used the method of decomposition of a potential barrier to found the solu-

tions of the relativistic equation of Dirac for the problem in one dimension.

Keywords:  solution of the Schrödinger equation, solution of the Dirac equation, potential bar-
rier, rectangular approximation�
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PREFACE

The problem of potential barriers is in active use in Classical Wave Optics,

but it is of particular importance in the Wave Mechanics. This problem clearly

outlines certain differences between Classical Mechanics and Wave Mechanics.

Many problems of the latter can be solved approximately by the use of potential

barriers. One replaces, for example, the potential energy curve in a domain where

the potential varies rapidly by a potential wall and also a potential hill by a barrier

with a simple shape, mostly rectangular. In other cases, where the potential curve

forms series of potential hills, one can replace the latter with series of simple

barriers. One should then repeat many times the calculations concerning a simple

barrier.

On the pages that follow we develop this idea – of replacing given barrier

with a series of rectangular barriers. The problem is easy to pose in the case of

motion in one dimension. Using the vector notations, we have found a transfor-

mation matrix which connects the amplitudes of the incident wave with those of

the reflected and of the transmitted waves. This matrix allows us to express the

coefficients of reflection and the coefficients of transmission of the given barrier.

As a consequence of these formulas, one obtains the solution of the Schrödinger

equation in a series of multiple integrals. With the help of a dominant matrix, one

proves the absolute convergence of these series in the whole interval, which does

not contain the singular points of the potential function and the turning points in

the Classical Mechanics. For all those points, one does separate considerations.

The first approximate solution found with this method coincides with the approx-

imate solution obtained with the method of Brillouin-Wentzel. From the study we
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make using the latter method, follows that the calculation of the coefficients of

reflection and transmission is valid for barriers, in the interior of which, the wave

function becomes infinite at the turning points.

We have then developed second method of solving the wave equation. The

calculations were done with the help of matrices, as previously. The application

of this method in the case when the potential function is linear, gave us very easily

the known solution of the wave equation, expressed as Bessel series.

In one of the chapters that follows we have generalized the method of solving

the wave equation of one independent variable, for the wave equation of multiple

bodies in any motion, starting with the problem of motion of two bodies on a

straight line. The integral of the equation is written with the help of two transfor-

mation matrices which have the form of the transformation matrix of the problem

in one dimension. For the problem of n bodies one has to write 3n matrices of

the same form. Almost all considerations done in the case of the one-dimensional

problem can be applied easily on generalized problems and we haven’t done that

in detail in the last case.

In the end, we have used the method of decomposition of the potential barrier

to find the solutions of the relativistic equation of Dirac for the problem in one

dimension. As first approximation to this method we have found the approximate

solution given by M. Pauli.

In all of the considerations that follow one had to use many facts from the

theory of barriers. We have also done a brief exposé of this theory, using the

principal course of M. Louis de Broglie [7]. For all this we wish to express our

profound gratitude to M. Louis de Broglie, and also for the benevolent interest he

granted to this work.

16
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CHAPTER 1

1.1 The basics of potential barriers

All the problems in the Wave Mechanics consist of studying the propagation

of the waves associated with material particles. Every particle with mass m and

energy E, in the absence of exterior field, is associated with a de Broglie wave

(matter wave) with wavelength λ:

λ =
h√
2mE

(1)

where h is the Planck constant. When the particle is in exterior field defined with

U(x,y,z, t), the wavelength λ of the associated particle and the coefficient of re-

fraction n are defined by:

λ =
h√

2m(E−U)
, n=

√
E−U
E

, (2)

and the wave function Φ satisfies the Schrödinger equation:

∆Φ− 8π2m
h2

UΦ =
4πim
h

∂Φ
∂t

. (3)

If the exterior field does not depend on time, the equation (3) admits as so-

lution the standing (stationary) waves Φ = Ψ(x,y,z)e
2πi
h Et , and the amplitude Ψ

satisfies the Schrödinger equation:

∆Ψ+
8π2m
h2

[E−U(x,y,z)]Ψ = 0. (4)

All the problems in the non-relativistic Wave Mechanics are related to the

solution of the Schrödinger equation. Unfortunately, finding this solution is not

easy even in simple cases. In the more complicated cases, for example, this of

17
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multiple particles interacting with each other, one cannot directly solve this prob-

lem. For the problem of Helium – two electrons moving around a nucleus – one

finds approximate and qualitative results with successive approximations. Even

the problem in one dimension is completely solved in the few cases, when the po-

tential function is in the form of a polynomial with not very high degree or a ratio

of such polynomials [12]. For the different cases which appear in the practice,

there are approximate methods for solving the wave equation. We are going to

present the often used method of Brillouin-Wentzel-Kramers.

1.2 Method of Brillouin-Wentzel [2, 15]

The Scrödinger equation (5) takes the following form in the case of motion

of a particle on a straight line which we choose to be the axis OX:

d2Ψ
dx2

+
8π2m
h2

[E−U(x)]Ψ = 0. (5)

One searches for a solution of (5) in the form:

Ψ = e
2πi
h

∫ xydx. (6)

One expands the function y(x) in power series of h
2πi :

y=
∞

∑
ν=0

(
h
2πi

)ν

yν = y0(x)+
h
2πi

y1(x)+
(

h
2πi

)2
y2(x)+ . . . (7)

Taking into account (7), we replaceΨ (6) in (5). By canceling the coefficients

in front of the different of powers of h
2πi , one finds the recurrence formulas:

y′j−1+
j

∑
ν=1

yνy j−ν = 0, j = 1,2, . . . (8)

and explicitly the first terms of y are:

y20 = 2m[E−U(x)], y1 =
−y′0
2y0

, y2 =−y′1+ y21
2y0

, . . . (9)
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Usually one works with the first two terms y0 and y1:

Ψ =
1

4
√
2m(E−U)

e±
2πi
h

∫ x
√
2m(E−U)dx. (10)

The integral in the exponent of (10) is the recursive Jacobi function. One

finds this function always when the approximation of geometrical optics is valid

and one must expect that the form (10) of Ψ corresponds to this approximation.

Let us try to take into account the degree of the approximation that we have,

by retaining only the first two terms in the series (8). For this, we have to check

when the term y2 is negligible against y1. According to (2), y0 is proportional to n

and from (9) we obtain:

y1 =− y′0
2y0

=−
dn
dx
2n .

According to (9) the value of y2 is close to − y21
2y0

=−
dn
dx

4n2y0
.

One sees that one can ignore y2 against y1 if y2
y1
<< 1 or if :

1
n
dn
dx

λ << 1. (11)

Hence, it will be legitimate to use the approximate function (10) when the

coefficient of refraction n varies little on the scale of the wavelength of the wave,

which is to say, in the approximation of the geometrical optics.

In the domain where E <U the formulas we find are analogous to the previ-

ous ones, but the wave function becomes non-periodic.

The question of the convergence of the series (8) which the Brillouin-Wentzel

method introduces, is not an easy one. Often there are cases in which those series

are strongly divergent. In the neighborhood of the points where E =U , the value

of Ψ according to (10) grows indefinitely. Hence to apply the formula (10), one

needs to exclude the regions around those points.

In the Kramers method [11], one searches for an approximate to (6) solution,

19
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in the form Ψ = g(x)cos f (x) in the interval (x1x2)∗ . One uses the condition

f (x2)− f (x1) ∼ nπ, where n is an integer. g(x) is a continuous function. On

arrives to a formula representing the real part of (10). The appropriate values of

(6) are found with the help of the condition from the classical theory of numbers,

that the phase integral is equal to n h
2π .

One can look for the integral of the Schrödinger equation for many particles

with successive approximation [2], but already the first approximation that one

finds represents the Jacobi equation for many particles and the integral of this

equation is not known in general.

1.3 Potential barriers

When the wave Ψ associated with a particle crosses a surface S, on which

the potential has a finite discontinuity, Ψ remains continuous as well as its first

derivative along the normal to S [7]. This property is of great importance for the

problem of passage of particles trough a potential barrier.

The simplest problem of discontinuity of the potential appears in the case

where a plane separates two homogeneous media with constant potentialsU1 and

U2. If a monochromatic plane wave propagates in the first medium and falls on

this plane, it will be partially reflected and it will partially penetrate in the second

medium. One wants to determine the amplitudes of the reflected and the transmit-

ted waves, in order to know the intensities corresponding to this waves.

Rectangular barrier – We will operate similarly to the previous case of

passage of particles trough a potential barrier. We will consider a medium with a

potential U . On the two sides of this medium the potential is zero. We take the

axis x for normal to the parallel planes and we assume E <U . The plane wave

∗Translator’s Note: This notation of the interval comes from the original paper. It stands for the
standard notation (x1,x2)
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which propagates following the positive direction of x, falls normally to the left

side of the barrier. A part of this wave reflects, other part penetrates the barrier.

Many reflections occur on the barrier and when the process becomes stationary,

to the left of the barrier there is an incident wave Ψi and a reflected wave Ψr

which corresponding amplitudes A and B and also two waves with amplitudes C

and D with propagate to the left and to the right respectively in the interior of

the barrier and also one transmitted wave Ψt with amplitude E to the right of the

barrier. Now the fundamental problem is to find the amplitudes B and E, because

| B |2/| A |2 = R measures the number of reflected particles and | E |2/| A |2 = T –

the number of the transmitted particles (coefficient of transmission).

As we have already mentioned, the wave that crosses the discontinuity sur-

face of the potential, remains continuous, as well as its derivative along the normal.

Then, one has to write the conditions of continuity on the two parallel planes. One

will have four linear equation with respect to A,B,C,D,E. Solving those equa-

tions, one finds [7] the values of B and E and ultimately of R and T :

R=
(k22− k21)

2 sin2 k2l
4k21k

2
2 cos2 k2l+(k21+ k22)2 sin

2 k2l
. (12)

T =
4k21k

2
2

4k21k
2
2 cos2 k2l+(k21+ k22)2 sin

2 k2l
=

1

1+ U2

4E(E−U) sin
2
[
2π
h

√
2m(E−U)l

] .

(12′)

where:

k1 =
2π
h

√
2mE and k2 =

2π
h

√
2m(E−U).

IfU > E, one will have for R and T formulas similar to (12) and (12′).

The formulas (12) and (12′) show that the number of transmitted particles T

is a function of the length l of the barrier and the energy E. If l is constant and

E varies, T is a function of E which passes trough successive maximums of the

21
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the standard notation (x1,x2).
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common value T = 1 for a series En of the values of E. To all En correspond

wavelengths λn of a wave which crosses the barrier completely. This choice of

the wave is a resonance of a kind, which we will see manifesting always in the

problem of barriers.

Triangular barrier – For rectangular barrier, the functionU is constant and

the solution of the wave equation is very simple. The more complicated case

where U is a linear function of x was studied by Fowler and Nordheim [9]. With

a convenient choice of the coordinate origin O one has: U = 0 for x ≤ 0 and

U =C−Fx for x > 0 (F and C are constants). This is a barrier with the shape of

a rectangular triangle. In the interior of the barrier the wave equation is:

d2Ψ
dx2

+
8π2m
h2

[E−C+Fx]Ψ = 0. (13)

The integral of (13) is expressed by the Bessel functions J 1
3
and J− 1

3
. Writ-

ing the conditions of continuity on the two ends of the barrier, after long enough

calculations, one obtains the following value of the coefficient of transmission T :

T =
4[E(C−E)]

1
2

C
e−

8π
h

√
2m(C−E)

3
2

3F . (14)

If one calculates now T using the approximate wave function (10), one finds

[7] that the principle value of T is given by the exponential factor in (14).

When we discussed the domain of validity of equation (10), we saw that

it is not always valid in a domain which contains the points for which E = U ,

because Ψ becomes infinite at those points. This is why we verify in many case,

like the previous one, that the value of T evaluated according to the approximate

formula (10) of the Brillouin-Wentzel gives the general phenomenon. Despite that

Ψ according to (10) is discontinuous in the interval, its application for evaluating

T gives sound results. We will see later the explication of this fact, when we find

the solution of the wave equation using alternative approach.
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Harmonic oscillator – The harmonic oscillator is formed by a material point

with mass m, attracted to the point O with a force kx proportional to the distance

of the origin x, k = 4π2ν2m, where ν is the frequency. Its equation is:

d2Ψ
dx2

+
8π2m
h2

[E− k
2
x2]Ψ = 0. (15)

One finds [6, 7] that if E = (n+ 1
2)hν, (n = 0,1,2, . . . ), one of the two inde-

pendent solutions of (15) is an eigenfunction. If E is not in the mentioned form,

then (15) does not have eigen-solutions.

Let us now consider a barrier for which the potential is with parabolic shape

U = k
2x
2 in the interval (x = −l,x = l) and it is zero outside this interval. If the

monochromatic plane wave falls on the barrier, one can remake the usual calcula-

tions for the barrier and to find the coefficient of transmission (transparency) T . If

E ̸= (n+ 1
2)hν, one finds:

T =
16µ2

β2(1+µ2)2
e2λe−4γl2 ;µ=

k
2γl

,γ = 2
√

km
h
,λ =

2E
hν

(16)

If E = (n+ 1
2)hν one finds:

T =
4µ2

(1+µ2)2
= 4

E/Um
(1+E/Um)2

;Um =
kl2

2
. (17)

Thus when the energy of the falling particles coincides with one of the eigen-

values of the harmonic oscillator, the number of the transmitted particles is much

larger than in the case where E ̸= (n+ 1
2)hν. This is again a resonance phe-

nomenon.
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Ψ according to (10) is discontinuous in the interval, its application for evaluating

T gives sound results. We will see later the explication of this fact, when we find

the solution of the wave equation using alternative approach.
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Harmonic oscillator – The harmonic oscillator is formed by a material point

with mass m, attracted to the point O with a force kx proportional to the distance

of the origin x, k = 4π2ν2m, where ν is the frequency. Its equation is:

d2Ψ
dx2

+
8π2m
h2

[E− k
2
x2]Ψ = 0. (15)

One finds [6, 7] that if E = (n+ 1
2)hν, (n = 0,1,2, . . . ), one of the two inde-

pendent solutions of (15) is an eigenfunction. If E is not in the mentioned form,

then (15) does not have eigen-solutions.

Let us now consider a barrier for which the potential is with parabolic shape

U = k
2x
2 in the interval (x = −l,x = l) and it is zero outside this interval. If the

monochromatic plane wave falls on the barrier, one can remake the usual calcula-

tions for the barrier and to find the coefficient of transmission (transparency) T . If

E ̸= (n+ 1
2)hν, one finds:

T =
16µ2

β2(1+µ2)2
e2λe−4γl2 ;µ=

k
2γl

,γ = 2
√

km
h
,λ =

2E
hν

(16)

If E = (n+ 1
2)hν one finds:

T =
4µ2

(1+µ2)2
= 4

E/Um
(1+E/Um)2

;Um =
kl2

2
. (17)

Thus when the energy of the falling particles coincides with one of the eigen-

values of the harmonic oscillator, the number of the transmitted particles is much

larger than in the case where E ̸= (n+ 1
2)hν. This is again a resonance phe-

nomenon.
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CHAPTER 2

2.1 Decomposition of a potential barrier into elementary barriers [5]

In the previous chapter, we presented some essential results on the problems

of potential barriers in the Wave Mechanics. Certain points have been developed

in detail due to their applications we will use in the following chapters.

As we have already mentioned, many problems of the passage of particles

trough a barrier of any kind can be solved well enough approximately by replac-

ing the given barrier of general shape with a barrier of simple shape where the

calculations are easy to make. It is natural to pose the problem of series of simple-

shape barriers, especially rectangular ones. One can hardly expect to realize in

practice a series of barriers of such shape but the problem when one considers

the said series on the place of a barrier with general shape, can be of interest for

the approximate solutions which one can obtain. If one has to work with limited

number of rectangular barriers, one repeats as many times as the given barriers

the calculations done for a rectangular barrier. But if this number is too big, the

calculations become too long and impractical. One can, then, make some simpli-

fications and find handy formulas for which one can take the limit. This is what

we will study.

We are to work with the problem of passage of particles trough barrier of any

shape, starting with the simplest case – this of propagation of particles following

a straight line OX .

The barrier extends for example from x0 to x′. The potential curve which

defines the barrier is given by its equationU =U(x) and the wave equation of the
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Figure 1.

particles between x0 and x′ will be:

d2Ψ
dx2

+
8π2m
h2

[E−U(x)]Ψ = 0. (18)

We suppose that U(x) is continuous, bounded and has first derivative for all

the values of x in (x0x′), where U is composed of finite number of arcs of curves

which have the listed properties.

Let us divide the interval x0x′ into n parts (n is an integer) with the points of

division on the abscissa x0,x1,x2, . . . ,xn−1,xn = x′. For this points of division we

make the perpendiculars to OX which cross the curve U at the points U1,U2, . . ..

If now we draw horizontal lines from U1,U2, . . . until they intersect the lines per-

pendicular to OX and passing trough x2,x3, . . . we will form a broken line with the

shape of a step, inscribed in the curveU . The method for studying the passage of

particles trough the barrierU will consist of studying the corresponding case of a

barrier formed by the broken line and taking the limit n→ ∞.

Let us suppose that the particles propagate in the direction OX moving uni-

formly. The propagation is represented by a monochromatic plane wave with

amplitude A0:

Ψ(x) = A0e−ikx, k =
2π
h

√
2mE,
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where we didn’t write the factor e2πiνt , which should be assumed. E is the energy

of the particles. The phenomenon which will be produced from physical point of

view when the wave Ψ reaches the barrier is the following. One part if the wave

is reflected by the first elementary barrier of width x2− x1 and of height U(x1),

another part penetrates trough the barrier. On its turn, this part is also partially

reflected from the second barrier and it partially penetrates and so on. Effectively

in every barrier there will be a group of waves which propagates in the direction

OX and another group moving in the opposite direction. The result will be that in

every barrier there is one wave moving to the right and one moving to the left. The

latter two waves will have complicated form if the barriers have finite widths but

if xi−xi−1 is very small, one can consider the ensemble of portions of the waves in

the elementary barrier xi− xi−1 as forming two parts of one monochromatic plane

wave which propagates to the right and another which propagates to the left. Phys-

ically, one can say that in every small barrier there is certain probability to find the

particles moving to the left or to the right. From purely mathematical point of

view one can say that the Schrödinger equation which describes the movement of

particles, admits in every elementary barrier a solution Ψ which is linear combi-

nation of two monochromatic plane waves which propagate to the left and to the

right respectively. If U(x j) is the value of the potential energy in the barrier with

width x j+1− x j, the wave equation valid in the interval (x j,x j+1) is:

d2Ψ j

dx2
+
8π2m
h2

[E−U(x j)]Ψ j = 0 (18′)

and its complete solution valid for the values of x between x j and x j+1:

Ψ j(x) = Aje−iy jx+Bjeiy jx, ( j = 1,2, . . . ,n−1) (19)

with

y j =
2π
h

√
2m[E−U(x j)] (19′)
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If E >Uj, one will have as a solution a true wave, if E <Uj, one will not have,

strictly speaking, a wave but a real non-periodic function. Nevertheless, this does

not affect the reasoning which follows. We have already seen (p.4) that the wave

Ψ and its derivative should be continuous at the ends of the barrier crossed by the

wave Ψ. In our case, this should be true at all ends common for two neighboring

barrier. On will have then the conditions of continuity, which will be for example

for x= x j:

Ψ j(x j+1) = Ψ j+1(x j+1),
(
dΨ j

dx

)

x j+1

=

(
dΨ j+1

dx

)

x j+1

(20)

where the explicit form (removing the factor i in the second equation):



Aje−iy jx j+1 +Bjeiy jx j+1 = Aj+1e−iy j+1x j+1 +Bj+1eiy j+1x j+1

y j(Aje−iy jx j+1 −Bjeiy jx j+1) = y j+1(Aj+1e−iy j+1x j+1 −Bj+1eiy j+1x j+1)

( j = 0,1,2, . . . ,n−2)

(21)



An−1e−iyn−1xn +Bn−1eiyn−1xn =Ce−iy0xn

yn−1(An−1e−iyn−1xn −Bn−1eiyn−1xn) = y0Ce−iy0xn

(22)

The amplitude of the transmitted wave is indicated byC, this of the reflected wave

– by B0.

Since the barrier is composed of n− 1 successive barriers, one has 2n con-

ditions like (21) and (22) which allow us to eliminate the amplitudes Aj,Bj( j =

1,2, . . .n−1) and to find B0 andC as functions of the amplitude A0 which is arbi-

trary (The systems (21) and (22) contain 2n equations among the 2n+1 quantities

Aj,Bj( j = 1,2, . . .n− 1) and C). To make this eliminations, one can proceed as

follows. The system (21) takes as a value of the index j = 0, then one finds the

A1,B1 as functions of A0,B0. One puts the values of A1,B1 in the two equations

(21) for j = 1 and then one has relation between A0,B0 and A2,B2, from where

27



27

where we didn’t write the factor e2πiνt , which should be assumed. E is the energy

of the particles. The phenomenon which will be produced from physical point of

view when the wave Ψ reaches the barrier is the following. One part if the wave

is reflected by the first elementary barrier of width x2− x1 and of height U(x1),

another part penetrates trough the barrier. On its turn, this part is also partially

reflected from the second barrier and it partially penetrates and so on. Effectively

in every barrier there will be a group of waves which propagates in the direction

OX and another group moving in the opposite direction. The result will be that in

every barrier there is one wave moving to the right and one moving to the left. The

latter two waves will have complicated form if the barriers have finite widths but

if xi−xi−1 is very small, one can consider the ensemble of portions of the waves in

the elementary barrier xi− xi−1 as forming two parts of one monochromatic plane

wave which propagates to the right and another which propagates to the left. Phys-

ically, one can say that in every small barrier there is certain probability to find the

particles moving to the left or to the right. From purely mathematical point of

view one can say that the Schrödinger equation which describes the movement of

particles, admits in every elementary barrier a solution Ψ which is linear combi-

nation of two monochromatic plane waves which propagate to the left and to the

right respectively. If U(x j) is the value of the potential energy in the barrier with

width x j+1− x j, the wave equation valid in the interval (x j,x j+1) is:

d2Ψ j

dx2
+
8π2m
h2

[E−U(x j)]Ψ j = 0 (18′)

and its complete solution valid for the values of x between x j and x j+1:

Ψ j(x) = Aje−iy jx+Bjeiy jx, ( j = 1,2, . . . ,n−1) (19)

with

y j =
2π
h

√
2m[E−U(x j)] (19′)

26

If E >Uj, one will have as a solution a true wave, if E <Uj, one will not have,

strictly speaking, a wave but a real non-periodic function. Nevertheless, this does

not affect the reasoning which follows. We have already seen (p.4) that the wave

Ψ and its derivative should be continuous at the ends of the barrier crossed by the

wave Ψ. In our case, this should be true at all ends common for two neighboring

barrier. On will have then the conditions of continuity, which will be for example

for x= x j:

Ψ j(x j+1) = Ψ j+1(x j+1),
(
dΨ j

dx

)

x j+1

=

(
dΨ j+1

dx

)

x j+1

(20)

where the explicit form (removing the factor i in the second equation):



Aje−iy jx j+1 +Bjeiy jx j+1 = Aj+1e−iy j+1x j+1 +Bj+1eiy j+1x j+1

y j(Aje−iy jx j+1 −Bjeiy jx j+1) = y j+1(Aj+1e−iy j+1x j+1 −Bj+1eiy j+1x j+1)

( j = 0,1,2, . . . ,n−2)

(21)



An−1e−iyn−1xn +Bn−1eiyn−1xn =Ce−iy0xn

yn−1(An−1e−iyn−1xn −Bn−1eiyn−1xn) = y0Ce−iy0xn

(22)

The amplitude of the transmitted wave is indicated byC, this of the reflected wave

– by B0.

Since the barrier is composed of n− 1 successive barriers, one has 2n con-

ditions like (21) and (22) which allow us to eliminate the amplitudes Aj,Bj( j =

1,2, . . .n−1) and to find B0 andC as functions of the amplitude A0 which is arbi-

trary (The systems (21) and (22) contain 2n equations among the 2n+1 quantities

Aj,Bj( j = 1,2, . . .n− 1) and C). To make this eliminations, one can proceed as

follows. The system (21) takes as a value of the index j = 0, then one finds the

A1,B1 as functions of A0,B0. One puts the values of A1,B1 in the two equations

(21) for j = 1 and then one has relation between A0,B0 and A2,B2, from where

27



28

one finds A2,B2 as functions of A0,B0 etc. Thus, by eliminating all amplitudes

Aj,Bj( j = 1,2, . . .n− 1), one will find the two relations between A0,B0 and C

which will give the needed formulas, expressing B0,C as known functions of A0.

The equations (21) are linear and non-homogeneous with respect to Aj+1,Bj+1.

The determinant Dj+1 of their coefficients is:

Dj+1 =

����
e−iy j+1x j+1 eiy j+1x j+1

y j+1e−iy j+1x j+1 −y j+1eiy j+1x j+1

����= y j+1

����
1 1
1 −1

����=−2y j+1. (23)

Using the theory of linear equations, one finds



Aj+1 =
1

Dj+1

�������
Aje−iy jx j+1 +Bjeiy jx j+1 eiy j+1x j+1

Ajy je−iy jx j+1 −Bjy jeiy jx j+1 −y j+1eiy j+1x j+1

�������
=

1
2y j+1

ei(y j+1−y j)x j+1(y j+1+ y j)Aj+
1

2y j+1
ei(y j+1+y j)x j+1(y j+1− y j)Bj

(24)

and similarly:

Bj+1 =
y j+1− y j
2y j+1

e−i(y j+1+y j)x j+1Aj+
y j+1+ y j
2y j+1

e−i(y j+1−y j)x j+1Bj. (25)

It is clear that according to (23), at the points whereU(x) = E and thus Dj+1 = 0,

this method cannot be directly applied and one has to make special considerations.

It is convenient now to introduce the vector notations and language, that is

to say that we consider the amplitudes Aj,Bj as the two components of a vector

a⃗ j. Thus the relation (21) connects the components of the vector a⃗ j with those of

the vector a⃗ j+1. As we know, the transition from vector a⃗ j to vector a⃗ j+1 can be

performed with the help of a matrix of two rows and two columns, by considering

the components of the vectors as a matrix of two lines and one column.

With this language, one can replace the two relations (24) and (25) with the

following: ����
Aj+1
Bj+1

����= |Mj|
����
Aj
B j

���� (26)
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or also:

a⃗ j+1 =Mj⃗a j, ( j = 0,1,2, . . . ,n−1) (27)

Mj being the following matrix:

Mj =

�����
ei(y j+1−y j)x j+1 y j+1+y j

2y j+1
ei(y j+1+y j)x j+1 y j+1−y j

2y j+1
e−i(y j+1+y j)x j+1 y j+1−y j

2y j+1
e−i(y j+1−y j)x j+1 y j+1+y j

2y j+1

����� (28)

According to equation (27), the matrix M transforms the vector a⃗ j into the

vector a⃗ j+1. In the same manner one transforms the vector a⃗ j+1 into a⃗ j+2 with the

help of the matrix Mj+1 whose difference from Mj is that the index j is replaced

with j+1. By performing p successive eliminations, one will arrive at the vector

relation:

a⃗ j+p =Mj+pMj+p−1 . . .Mj+1⃗a j.

However, if we start the elimination from j = 0 to p= n, one will have:

a⃗n =Ma⃗0 (29)

M =MnMn−1 . . .M1M0. (29′)

M is a matrix with two lines and two columns, which will be calculated. The

elements m11 . . .m22 of the matrix M being known, the problem of the passage of

particles becomes a simple algebraic problem. The unknown amplitudes B0 andC

will be given by two linear relations coming from the following vector equation:
����
C
C

����=
����
m11 m12
m21 m22

����
����
A0
B0

���� . (30)

We have divided the width of the given barrier and the barrier itself to n

parts. If n is big enough, the widths of the elementary barriers are very small and

the differences between the heights of each two neighboring barriers is also very

small. We denote:

x j+1− x j = ∆x j, y j+1− y j =
(
dy
dx

)

x j

∆x j = ∆y j. (31)
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The differences ∆y j are fully determined with the assumptions on the function

U(x) in the interval (x0x′). One can obtain another form of Mj, by replacing in its

terms y j+1 with y j+∆y j, and x j+1 with x j+∆x j. Since the ∆y j are small, we keep

only the terms of the first order with respect to ∆y j in the elements of the matrix

Mj. For example, the term (mj)11 of the matrix Mj will be:


(mj)11 = e

i∆y jx j
2y j+∆y j
2(y j+∆y j) = e

i∆y jx j
(
1+

∆y j
2y j

)(
1− ∆y j

y j

)

= e
ix j∆y j

(
1− ∆y j

2y j

)
= e

ix j∆y j−
∆y j
2y j .

(32)

In the same manner one finds, always stopping on infinitely small quantities of the

first order:


(mj)12 = ei(2y j+∆y j)(x j+∆x j) ∆y j

2(y j+∆y j) =
∆y j
2y j

e2ix jy j

(mj)21 =
∆y j
2y j

e−2ix jy j , (mj)22 = e
−ix j∆y j−

∆y j
2y j

(32′)

and the matrix Mj can be written as:

Mj =

������
e
ix j∆y j−

∆y j
2y j

∆y j
2y j

e2ix jy j

∆y j
2y j

e−2ix jy j e
−ix j∆y j−

∆y j
2y j

������
(33)

When ∆yk are small, the elements of the main diagonal (mj)11 and (mj)22 have

values which don’t differ too much from unity, while (mj)12 and (mj)21 are very

small. Then Mj is an almost diagonal matrix, by calling a diagonal matrix the

matrix ∥aikδik∥, with any aik and:

δik =



1 if i= k

0 if i ̸= k.

In order to evaluate more easily the multiplication of Mj in the formula (29′) and

to understand clearly the law of the formation of the terms in the multiplication

M, we evaluate the nth of the almost diagonal matrix A= ∥aik∥(i,k = 1,2):

A=

����
1+α α

α 1+α

���� (34)
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where α is a positive number, very small with respect to unity, a≪ 1.

If one has two matrices A = ∥aik∥ and B = ∥bik∥, the elements xik of the

matrix C = AB are given, as we know, by the formula:

cik = ∑
l
ailblk

... ∗

and if n is odd, the summation index i varies from 0 to n−1
2 in the elements of Bn.

If α is a complex number, with small modulus and any phase, then α = reiϕ, it is

obvious that one can calculate in similar manner An, by formally replacing α with

reiϕ in the elements of An (the same for Bn).

We are going to now calculate the matrix M =MnMn−1 . . .M0 from (29′). In

order to simplify the calculations we set for the elements of the matrix Mk (33)

(using the index k on the place of the index j):

ixk∆yk = αk, 2ixkyk = βk,
∆yk
2yk

= ρk, (35)

andMk will be written as:

Mk =

����
eαk−ρk ρkeβk

ρke−βk e−αk−ρk ,

���� (36)

where ρk enter in the elements of Mk as factors in front of the exponential func-

tions and in the exponents of the exponential functions. One can liken the matrix

Mk in the form (36) to the matrix B (2.20). ρk as factors in the exponential in Mk

correspond to α in B. It is obvious that the terms of Mk will be composed of ρk,

considered as factors in the exponential functions, exactly the same way as the

terms of B are composed of numbers α, since the ρk which enter the exponents

∗Translator’s note: Pages 20-21 of the original thesis are missing from the document, therefore
formulas (2.18), (2.19), (2.20), (2.21), appearing after (34) and before (35), are also missing. They
would be referred in the text with their original numeration.
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The differences ∆y j are fully determined with the assumptions on the function

U(x) in the interval (x0x′). One can obtain another form of Mj, by replacing in its

terms y j+1 with y j+∆y j, and x j+1 with x j+∆x j. Since the ∆y j are small, we keep

only the terms of the first order with respect to ∆y j in the elements of the matrix

Mj. For example, the term (mj)11 of the matrix Mj will be:


(mj)11 = e

i∆y jx j
2y j+∆y j
2(y j+∆y j) = e

i∆y jx j
(
1+

∆y j
2y j

)(
1− ∆y j

y j

)

= e
ix j∆y j

(
1− ∆y j

2y j

)
= e

ix j∆y j−
∆y j
2y j .

(32)

In the same manner one finds, always stopping on infinitely small quantities of the

first order:


(mj)12 = ei(2y j+∆y j)(x j+∆x j) ∆y j

2(y j+∆y j) =
∆y j
2y j

e2ix jy j

(mj)21 =
∆y j
2y j

e−2ix jy j , (mj)22 = e
−ix j∆y j−

∆y j
2y j

(32′)

and the matrix Mj can be written as:

Mj =

������
e
ix j∆y j−

∆y j
2y j

∆y j
2y j

e2ix jy j

∆y j
2y j

e−2ix jy j e
−ix j∆y j−

∆y j
2y j

������
(33)

When ∆yk are small, the elements of the main diagonal (mj)11 and (mj)22 have

values which don’t differ too much from unity, while (mj)12 and (mj)21 are very

small. Then Mj is an almost diagonal matrix, by calling a diagonal matrix the

matrix ∥aikδik∥, with any aik and:

δik =



1 if i= k

0 if i ̸= k.

In order to evaluate more easily the multiplication of Mj in the formula (29′) and

to understand clearly the law of the formation of the terms in the multiplication

M, we evaluate the nth of the almost diagonal matrix A= ∥aik∥(i,k = 1,2):

A=

����
1+α α

α 1+α

���� (34)
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where α is a positive number, very small with respect to unity, a≪ 1.

If one has two matrices A = ∥aik∥ and B = ∥bik∥, the elements xik of the

matrix C = AB are given, as we know, by the formula:

cik = ∑
l
ailblk

... ∗

and if n is odd, the summation index i varies from 0 to n−1
2 in the elements of Bn.

If α is a complex number, with small modulus and any phase, then α = reiϕ, it is

obvious that one can calculate in similar manner An, by formally replacing α with

reiϕ in the elements of An (the same for Bn).

We are going to now calculate the matrix M =MnMn−1 . . .M0 from (29′). In

order to simplify the calculations we set for the elements of the matrix Mk (33)

(using the index k on the place of the index j):

ixk∆yk = αk, 2ixkyk = βk,
∆yk
2yk

= ρk, (35)

andMk will be written as:

Mk =

����
eαk−ρk ρkeβk

ρke−βk e−αk−ρk ,

���� (36)

where ρk enter in the elements of Mk as factors in front of the exponential func-

tions and in the exponents of the exponential functions. One can liken the matrix

Mk in the form (36) to the matrix B (2.20). ρk as factors in the exponential in Mk

correspond to α in B. It is obvious that the terms of Mk will be composed of ρk,

considered as factors in the exponential functions, exactly the same way as the

terms of B are composed of numbers α, since the ρk which enter the exponents

∗Translator’s note: Pages 20-21 of the original thesis are missing from the document, therefore
formulas (2.18), (2.19), (2.20), (2.21), appearing after (34) and before (35), are also missing. They
would be referred in the text with their original numeration.
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in the terms of Mk remain always in the exponents when one multiplies two ex-

ponents. As a consequence, as formula (2.21) shows, the terms mrs(r,s = 1,2) of

the matrix product M will be polynomials with respect to ρk. The coefficients of

these polynomials will be the exponential functions which contain the ρk. Still

comparing M with Bn (2.21) one sees that m11 and m22 will be even polynomials

with respect to ρk, and m12 and m21 are odd polynomials.

We multiplyMk (36) withMk+1 according to the law of matrix multiplication.

We find:

Mk+1Mk =

����
eαk+1+αk−ρk+1−ρk +ρk+1ρkeβk+1−βk ρkeαk+1−ρk+1+βk +ρk+1eβk+1−αk−ρk

ρk+1e−βk+1+αk−ρk +ρke−βk−αk+1−ρk+1 e−αk+1−αk−ρk+1−ρk +ρk+1ρke−βk+1+βk

���� .
(37)

Let us introduce notations which will be useful in what follows. Suppose we eval-

uated the product (37) of p successive matrices of the form Mk. In the elements

of the matrix product we group the terms which contain the factor ρk, those with

two factors ρk etc. . We note with m
2i,p
11 the sum of the elements of the first row

and the first column of the matrix product, which contains 2i factors ρk. (Obvi-

ously 2i ≤ p). One will have three more, analogous to the previous, notations:

m2i,p22 ,m2i+1,p12 ,m2i+1,p21 . For example, one can express with those notations two ele-

ments of the matrix (37):

eαk+1+αk−ρk+1−ρk +ρk+1ρkeβk+1−βk = m0,211 +m2,211

ρk+1e−βk+1+αk−ρk +ρke−βk−αk+1−ρk+1 = m1,221

By multiplying (37) withMk+2, we find the element m11 from the first line and the

first column of the product Mk+2Mk+1Mk:

m11 = eαk+2+αk+1+αk−ρk+2−ρk+1−ρk +ρk−1ρkeαk+2−ρk+2+βk+1−βk

+ρk+2ρk+1eαk−ρk+βk+2−βk+1 +ρk+2ρke−αk+1−ρk+1+βk+2−βk =m0,311 +m2,311 .
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The first element in the latter sum is m0,311 which can be written as

m0,311 = e

2

∑
j=0

αk+ j−
2

∑
j=0

ρk+ j

.

The element m0,411 will have the same form, but the sums in the exponent will have

one more term. Always following the complete mathematical induction, which is

immediately applicable to this case, one can see that the elementm0,p11 in the matrix

Mp−1Mp−2 . . .M2M1 will be:

m0,p11 = e

p−1

∑
j=0

αk+ j−
p−1

∑
j=0

ρk+ j

With the help of the notations (35) one obtains the explicit form of m0,p11 . Initially,

the factor in the exponents takes the following form:
p−1

∑
j=0

αk+ j−
p−1

∑
j=0

ρk+ j = i
p−1

∑
j=0

xk+ j∆yk+ j−
1
2

p−1

∑
j=0

∆yk+ j

yk+ j
. (38)

We divided the interval x0x′(the width of the barrier) to n parts. If n is a

very big number, thus each interval is very small, the above sums become definite

integrals. In the formulas which follow, the integrations are indicated with respect

to y, but one can immediately rewrite them with respect to x , since y is a known

function of x (19′) and dy = dy
dxdx. For the moment, we would not deal with the

question of convergence of the integrals, which will be discussed later on. By

taking the limit p→ ∞, the right part of the last equation becomes:



i
∫ yp
yk xdy−

1
2

∫ yp
yk

dy
y = i

∫ yp
yk xdy− lg

√
yp
yk

= i(xpyp− xkyk)− i
∫ yp
yk ydx− lg

√
yp
yk

(37′)

thus with the help of (19), m0,p11 becomes:

m0,p11 =

√
yp
yk
ei

∫ yp
yk

xdy

= 4

√
E−U(xk)
E−U(xp)

ei(xpyp−xkyk)−i[Φ(xp)−Φ(xk)]
(39)
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in the terms of Mk remain always in the exponents when one multiplies two ex-

ponents. As a consequence, as formula (2.21) shows, the terms mrs(r,s = 1,2) of

the matrix product M will be polynomials with respect to ρk. The coefficients of

these polynomials will be the exponential functions which contain the ρk. Still

comparing M with Bn (2.21) one sees that m11 and m22 will be even polynomials

with respect to ρk, and m12 and m21 are odd polynomials.

We multiplyMk (36) withMk+1 according to the law of matrix multiplication.

We find:

Mk+1Mk =

����
eαk+1+αk−ρk+1−ρk +ρk+1ρkeβk+1−βk ρkeαk+1−ρk+1+βk +ρk+1eβk+1−αk−ρk

ρk+1e−βk+1+αk−ρk +ρke−βk−αk+1−ρk+1 e−αk+1−αk−ρk+1−ρk +ρk+1ρke−βk+1+βk

���� .
(37)

Let us introduce notations which will be useful in what follows. Suppose we eval-

uated the product (37) of p successive matrices of the form Mk. In the elements

of the matrix product we group the terms which contain the factor ρk, those with

two factors ρk etc. . We note with m
2i,p
11 the sum of the elements of the first row

and the first column of the matrix product, which contains 2i factors ρk. (Obvi-

ously 2i ≤ p). One will have three more, analogous to the previous, notations:

m2i,p22 ,m2i+1,p12 ,m2i+1,p21 . For example, one can express with those notations two ele-

ments of the matrix (37):

eαk+1+αk−ρk+1−ρk +ρk+1ρkeβk+1−βk = m0,211 +m2,211

ρk+1e−βk+1+αk−ρk +ρke−βk−αk+1−ρk+1 = m1,221

By multiplying (37) withMk+2, we find the element m11 from the first line and the

first column of the product Mk+2Mk+1Mk:

m11 = eαk+2+αk+1+αk−ρk+2−ρk+1−ρk +ρk−1ρkeαk+2−ρk+2+βk+1−βk

+ρk+2ρk+1eαk−ρk+βk+2−βk+1 +ρk+2ρke−αk+1−ρk+1+βk+2−βk =m0,311 +m2,311 .

32

The first element in the latter sum is m0,311 which can be written as

m0,311 = e

2

∑
j=0

αk+ j−
2

∑
j=0

ρk+ j

.

The element m0,411 will have the same form, but the sums in the exponent will have

one more term. Always following the complete mathematical induction, which is

immediately applicable to this case, one can see that the elementm0,p11 in the matrix

Mp−1Mp−2 . . .M2M1 will be:

m0,p11 = e

p−1

∑
j=0

αk+ j−
p−1

∑
j=0

ρk+ j

With the help of the notations (35) one obtains the explicit form of m0,p11 . Initially,

the factor in the exponents takes the following form:
p−1

∑
j=0

αk+ j−
p−1

∑
j=0

ρk+ j = i
p−1

∑
j=0

xk+ j∆yk+ j−
1
2

p−1

∑
j=0

∆yk+ j

yk+ j
. (38)

We divided the interval x0x′(the width of the barrier) to n parts. If n is a

very big number, thus each interval is very small, the above sums become definite

integrals. In the formulas which follow, the integrations are indicated with respect

to y, but one can immediately rewrite them with respect to x , since y is a known

function of x (19′) and dy = dy
dxdx. For the moment, we would not deal with the

question of convergence of the integrals, which will be discussed later on. By

taking the limit p→ ∞, the right part of the last equation becomes:



i
∫ yp
yk xdy−

1
2

∫ yp
yk

dy
y = i

∫ yp
yk xdy− lg

√
yp
yk

= i(xpyp− xkyk)− i
∫ yp
yk ydx− lg

√
yp
yk

(37′)

thus with the help of (19), m0,p11 becomes:

m0,p11 =

√
yp
yk
ei

∫ yp
yk

xdy

= 4

√
E−U(xk)
E−U(xp)

ei(xpyp−xkyk)−i[Φ(xp)−Φ(xk)]
(39)
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where we have substituted:

i
∫ yp

yk
ydx= Φ(x) (37′′)

which is not else but the classical integral of Maupertuis.

If we fix the value of xn, the integral in m
0,p
11 is a function of its upper limit,

thus one can consider m0,p11 as a known function of xp, this is to say, of x. When the

transition to the limit is done, we will denote this function with m011(x) or simply

with m011.

According to (36), one sees that the elementm22 of the matrixMk differs from

m11 only by the sign of αk in the exponent. Taking account of this, we repeat the

reasoning of the formation of m011 in the matrix M. We easily see that m
0
22 differs

from m011 only by the sign of the exponent, namely:


m0,p22 =

√
yk
yp
e−i

∫ yp
yk

xdy

= 4

√
E−U(xk)
E−U(xp)

e−i(xpyp−xkyk)+i
∫ yp
yk

ydx
(39′)

We mentioned above that the elements m12 and m21 of M, like the elements of the

corresponding matrix Bn (2.21) are odd polynomials of ρ. Let us calculate m112,

the first term of m12. Evaluating the products, as above, step by step we find:

m1,p12 =
p−1

∑
j=0

ρk+ je
βk+ j−

j−1

∑
l=0

αk+l +
p−1

∑
l= j+1

αk+l −
p−l

∑
l=0

ρk+l

. (40)

We verify immediately this relation for p = 3. One sees also easily that this rela-

tion is valid for the value p = n if it is correct for p = n− 1. When p → ∞, the

sums become integrals and one has:


m1,p12 (xp) =

1
2

∫ yp
yk

dy
y e

2ixy−i
∫ y
yk
xdy+i

∫ yp
y xdy− 1

2

∫ yp
yk

dy
y

= 1
2

√
E−U(xk)
E−U(xp)

ei(xkyk+xpyp)
∫ yp
yk

dy
y ei

∫ x
xk
ydx−i

∫ xp
x ydx

(40′)
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Likewise one can find all the terms in the polynomials which form the ele-

ments of the matrixM. This method, however, is long and painful. We will find the

recurrence formulas which will allow us to write all the terms of the polynomials.

Let us form the product of p matrices:

Mk+pMk+p−1 . . .Mk+1Mk =M.

As it was already explained, m2i,p11 is the term of the first row and first column of

this matrix M, term which contains 2i factors ρ. Let us multiply from the left this

product with the matrix Mk+p+1. Then m
2i,p+1
11 , the term of the first row and first

column of the matrix product of p+ 1 factors, contains 2i factors ρ. This term

will be, according to the matrix multiplication rule, the sum of the term of the first

row and the first column of the preceding matrix M, which contains 2i factors ρ,

multiplied by eαk+p+1−ρk+p+1 and of the term of the second line and the first column

of the same matrixM which contains 2i−1 factors ρ, multiplied by ρk+p+1eβk+p+1 .

Explicitly, this product is:

m2i,p+111 = eαk+p+1−ρk+p+1m2i,p11 +ρk+p+1eβk+p+1m2i−1,p21 . (41)

The absolutely analogous reasoning to those above will give us three more recur-

rence formulas.



m2i+1,p+112 = eαk+p+1−ρk+p+1m2i+1,p12 +ρk+p+1eβk+p+1m2i,p22

m2i+1,p+121 = ρk+p+1e−βk+p+1m2i,p11 + e−αk+p+1−ρk+p+1m2i+1,p21

m2i,p+122 = ρk+p+1e−βk+p+1m2i−1,p12 + e−αk+p+1−ρk+p+1m2i,p22

(41′)

With the help of these formulas we can write explicitly the terms of the matrixM.

Let us start with m2i,p+111 . According to (41), this term is expressed with m2i,p11 , thus

the upper right index is decreased with one. If one expresses the term m2i,p−111 with
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where we have substituted:

i
∫ yp

yk
ydx= Φ(x) (37′′)

which is not else but the classical integral of Maupertuis.

If we fix the value of xn, the integral in m
0,p
11 is a function of its upper limit,

thus one can consider m0,p11 as a known function of xp, this is to say, of x. When the

transition to the limit is done, we will denote this function with m011(x) or simply

with m011.

According to (36), one sees that the elementm22 of the matrixMk differs from

m11 only by the sign of αk in the exponent. Taking account of this, we repeat the

reasoning of the formation of m011 in the matrix M. We easily see that m
0
22 differs

from m011 only by the sign of the exponent, namely:


m0,p22 =

√
yk
yp
e−i

∫ yp
yk

xdy

= 4

√
E−U(xk)
E−U(xp)

e−i(xpyp−xkyk)+i
∫ yp
yk

ydx
(39′)

We mentioned above that the elements m12 and m21 of M, like the elements of the

corresponding matrix Bn (2.21) are odd polynomials of ρ. Let us calculate m112,

the first term of m12. Evaluating the products, as above, step by step we find:

m1,p12 =
p−1

∑
j=0

ρk+ je
βk+ j−

j−1

∑
l=0

αk+l +
p−1

∑
l= j+1

αk+l −
p−l

∑
l=0

ρk+l

. (40)

We verify immediately this relation for p = 3. One sees also easily that this rela-

tion is valid for the value p = n if it is correct for p = n− 1. When p → ∞, the

sums become integrals and one has:


m1,p12 (xp) =

1
2

∫ yp
yk

dy
y e

2ixy−i
∫ y
yk
xdy+i

∫ yp
y xdy− 1

2

∫ yp
yk

dy
y

= 1
2

√
E−U(xk)
E−U(xp)

ei(xkyk+xpyp)
∫ yp
yk

dy
y ei

∫ x
xk
ydx−i

∫ xp
x ydx

(40′)

34

Likewise one can find all the terms in the polynomials which form the ele-

ments of the matrixM. This method, however, is long and painful. We will find the

recurrence formulas which will allow us to write all the terms of the polynomials.

Let us form the product of p matrices:

Mk+pMk+p−1 . . .Mk+1Mk =M.

As it was already explained, m2i,p11 is the term of the first row and first column of

this matrix M, term which contains 2i factors ρ. Let us multiply from the left this

product with the matrix Mk+p+1. Then m
2i,p+1
11 , the term of the first row and first

column of the matrix product of p+ 1 factors, contains 2i factors ρ. This term

will be, according to the matrix multiplication rule, the sum of the term of the first

row and the first column of the preceding matrix M, which contains 2i factors ρ,

multiplied by eαk+p+1−ρk+p+1 and of the term of the second line and the first column

of the same matrixM which contains 2i−1 factors ρ, multiplied by ρk+p+1eβk+p+1 .

Explicitly, this product is:

m2i,p+111 = eαk+p+1−ρk+p+1m2i,p11 +ρk+p+1eβk+p+1m2i−1,p21 . (41)

The absolutely analogous reasoning to those above will give us three more recur-

rence formulas.



m2i+1,p+112 = eαk+p+1−ρk+p+1m2i+1,p12 +ρk+p+1eβk+p+1m2i,p22

m2i+1,p+121 = ρk+p+1e−βk+p+1m2i,p11 + e−αk+p+1−ρk+p+1m2i+1,p21

m2i,p+122 = ρk+p+1e−βk+p+1m2i−1,p12 + e−αk+p+1−ρk+p+1m2i,p22

(41′)

With the help of these formulas we can write explicitly the terms of the matrixM.

Let us start with m2i,p+111 . According to (41), this term is expressed with m2i,p11 , thus

the upper right index is decreased with one. If one expresses the term m2i,p−111 with
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the help of the same formulas (41), one finds:

m2i,p+111 = ρk+p+1eβk+p+1m2i−1,p21

+ eαk+p+1−ρk+p+1(ρk+peβk+pm2i−1,p−121 + eαk+p−ρk+pm2i,p−111 ).

We can now replace m2i,p−111 of the last equality with m2i,p−211 using (41), the latter

term with m2i+1,p−311 and so on. We arrive this way at the term m2i,2i11 . The right side

of (41) will be a sum with respect to ρ. One finds easily, taking into account the
formation law of the last equality:

m2i,p+111 = ρk+p+1e
βk+p+1m2i−1,p21 +

p

∑
l=2i

ρk+le
βk+l+

p+1

∑
j=l+1

(αk+ j−ρk+ j)

m2i−1,l21 .

We replace in the last formula ρ,α,β with their values from (35) and we take

the limit p → ∞. The first term of the right side of the last equality cannot be

conveniently presented as a term of the sum. On can ignore it, since it tends to

zero at the same time as ρ. The term m2i,l21 of the sum depends of the index l, thus it

is a function of yl , this is to say of y, when the intervals tend to zero. This function

will be noted as m2i11(y). One finds for m
2i,p+1
11 , taking into account (41) and (41′):




m2i11(yp) =
1
2

∫ yp

yk

dy
y
e2ixy+i

∫ yp
y ξdη− 1

2

∫ yp
y

dy
y m2i−121 (y)

= 1
2√yp

∫ yp

yk

dy
√
y
e2ixy+i

∫ yk
y ξdηm2i−121 (y),

(42)

where ξ and η replace the variables x and y. With the help of (37′) and (37′′) one

can put m2i11(yp) in the form:

m2i11(yp) =
eixpyp−iΦ(yp)

2√yp

∫ yp

yk

dy
√
y
eixy−iΦ(y)m2i−121 (y). (42′)

The term m2i11(yp) will be a known function of y, if one knows m
2i−1
21 as a function

of y.

Let us take the second formula (41′). If we apply the same formula to the

term m2i+1,p21 on the right side, we decrease successively the index p so that for the
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term m2i+1,p+121 , one obtains the following formula:

m2i+1,p+121 =
p+1

∑
l=2i

ρk+le
−βk+l−

p+1

∑
i=l+1

(ak+ j−ρk+ j)

m2i,l11 .

and by taking the limit:

m2i+121 (yp) =
1

2√yp

∫ yp

yk

e
−2ixy−i

∫ yp

y
ξdη

√
y

m2i11(y)dy. (43)

In equation (42) one can replace mi1−2
21 (y) with the same term, taken from (43).

One finds:

m2i11(yp) =
1
22yp

∫ yp

yk

dy
√
y
e
2ixy+i

∫ yp

y
ξdη ∫ y

yk

e
−2ix1y1−i

∫ y

y1
ξ1dη1

√
y1

m2i−211 (y1)dy1 (44)

One can continue the same process on m112i−2 in order to decrease its upper right

index to zero, this is to say, to the term m011 which is known from (39). The final

form of m2i11 will be:


m2i11(yp) =
1
22yip

∫ yp

yk

dx
√
y
e
2ixy+i

∫ yp

y
ξdη ∫ y

yk

dy1√
y1
e−2ix1y1−i

∫ yp
y1

ξdη
∫ y1

yk
. . .

∫ y2i−2

yk

dy2i−1√
y2i−1−1

e−2ix2i−1y2i−1−i
∫

ξ2i−1dη2i−1m011(y2i−1)

(45)

(one should not confuse the index of the term i with the imaginary unit i).

It is clear that in the last formula, the variables with indexes which replace

formally the variables x and y, and the integrals are functions of their upper limits.

The last formula expresses m2i11(y) as a known function of y with the help of

2i integrations. Exactly the same way, one can find the formulas of the three other

terms:



m2i+112 (yp) = 1
22i+1yi+1k

∫ yp

yk

dy
√
y
e2ixy+i

∫ yp
y ξdη

∫ y

yk

dy1√
y1

e−2ix1y1−i
∫ yp
y1

ξ1dη1
∫

. . .

∫ y j−1

yk

dy j√y j
e
2ix jy j+

∫ yp
y j

ξ jdη jm022(y j)

m2i+121 (yp) = 1
22i+1yi+1k

∫ yp

yk

dy
√
y
e−2ixy−

∫ yp
yk

ξdη
∫ y

yk
. . .

∫ y j+1

yk

dy j√y j
e
−2ix jy j−

∫ yp
y j

ξ jdη jm011(y j)

m2i22(yp) = 1
22iyik

∫ yp

yk

dy
√
y
e−2ixy−

∫ yp
y ξdη

∫ y

yk
. . .

∫ y j+1

yk

dy j√y j
e
2ix jy j+

∫ yp
y j

ξ jdη jm022(y j)

(46)
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where one has to take for the index j of the last integral of the terms (46) j= 2i−1.

One can obtain another form of those formulas, like (42′), by replacing the integral
∫ x ξdη according to (37′) and (37′′) with Φ(x).

As we have said the four elements of the matrix M are polynomials of ρ.

These polynomials have finite number of terms when the interval x0x′ is divided

on n parts (n – finite). But if n → ∞, the elements of the matrix become infinite

series whose terms can be calculated according to the formulas below. The four

terms of M are: 



m11(x) =
∞

∑
i=0

m2i11(x), m12 =
∞

∑
i=0

m2i+112 ,

m21 =
∞

∑
i=0

m2i+121 , m22 =
∞

∑
i=0

m2i22

(47)

They are known functions of y, or of x, since y is a known function of x.

The problem which we had posed in the beginning of this study was to find

the proportion between the reflected particles and the transmitted particles by the

barrier. This is equivalent to finding the amplitude B0 of the reflected wave and C

– that of the transmitted wave according to formula (30). Since the matrix M is

known, the problem is solved in principle.

2.2 Convergence of the series (47)

We have to now discuss the question of convergence of the seriesm11, . . . ,m22

(47). All the integrals which enter in the terms (45) and (46) contain in the de-

nominator y =
√
2m(E−U(x)). Thus the functions under the integrals become

infinite for these values of x for which E =U , since y = 0. We consider firstly

the case where the right side of the equation U = E does not cut trough the bar-

rier between its end points x0x′ (y does not vanish between x0 and x′). We have

seen that the matrix Mj (33) or Mk (36) is almost diagonal, this is to say that the

absolute values of the main diagonal elements ofMk are almost unity, and that the

38

absolute values of the other elements are very small. Since the function y(x) is

continuous and bounded between x and x′, one can find a positive number α such

that 1+α will be bigger than the modules of the elements of the main diagonal

of all the matrices Mk (k = 1,2, . . . ,n), and α bigger than the module of the two

other elements of the matrices Mk(k = 1,2, . . . ,n). Thus the matrix:

Mα =

����
1+α α

α 1+α

����

is the “dominant” matrix of Mk. Mα is identical to A in (34). To the matrix M,

product of n matrices, will correspond the n-th power of Mα, thus Mn
α. We already

know the elements of that matrix Mn
α = An according to (2.19). We can write:

(an)11 = 1+
n

∑
k=1
2k−1Ck

nαk = 1+
1
2

n

∑
l=1
2kCk

nαk

=
1
2
(1+

n

∑
k=0
2kCk

nαk) =
1
2
[1+(1+2α)n]

With the assumptions made below for the function f (x), when the number n of

the division of the interval x0x′ tends to infinity, the main diagonal elements ofMk

tend to zero. Therefore α should tend to zero simultaneously with 1
n . If we assume

that α = m
n , where m is a finite positive number, we will find for the limit value of

(an)11:

lim
n→∞

(an)11 = lim
α→0

1
2
[
1+(1+2α)

m
α
]
=
1
2
(1+ e2m)

which is finite. For the term (an)12 ofM one finds the same with the help of (2.19):

lim
n→∞

(an)12 =
1
2
(−1+ e2m).

Since (an)11 = (an)22 and (an)12 = (an)21 all the elements of An are finite. As a

consequence, the sums (45) and (46) which have smaller values than the values

(an)11, . . . ,(an)22 are also finite.
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Now let us consider the case where y(x) vanishes in the interval x0x′. Ob-

viously the line E = U crosses the barrier at two points, or, in general, in even

number of points. Let us assume they are two.

The two terms m011 and m022 (39
′), in which we have already performed an

integration, contain
√
y in the denominator and they will be discontinuous for

y= 0. This discontinuity comes from the factor e
− 1
2

∫ yp

yk

dy
y =

√
yk
yp
. (37′), which

becomes indeterminate for yp = 0.

Figure 2.

This simply shows that the method of division of the barrier on a too big

number of elementary barriers of rectangular shape is not applicable around the

points P(x1) andQ(x2) (Fig.2), where the lineU = E crosses the barrier. However,

we can always cut the barriers on two small barriers which contain the points P and

Q and which extend from the pointM1(x1−ε) to the point N1(x1+ε) and from the

pointM2(x2−ε) to the point N2(x2+ε) respectively (ε is a small positive number).

The given barrier is thus divided to five successive barriers. The formulas (39) and

(39′) are surely valid for the three barriers from x0 to x1− ε, from x1+ ε to x2+ ε

and from x2+ ε to x′.

We connect the points M1N1 and M2N2 with rectilinear segments. The two

small dashed domains form two barriers where the curveU is a straight line. The
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passage of particles across those two barriers can be calculated as for a rectilinear

barrier (triangular) with the help of the functions of Bessel J 1
3
and J− 1

3
, without

having the discontinuity at the points P and Q anymore. We have thus five succes-

sive barriers on the place of the given barrier and the solution of equation (18) in

each of them is known. The problem is theoretically solved, but the calculations

will be complicated. For the moment we will omit them, since our problem is

to find the reflected wave and the transmitted wave, and we are to find them in

another way.

The formulas (37) and (37′) show that the discontinuity in the terms m011 and

m022 comes from those members of the second sum, for which yk+ j = 0. When one

goes from M1 to N1 (fig.2), y varies from a real value to a purely imaginary value

passing trough zero. Therefore the integration of
∫ dy

y is performed along contour

M1ON in the complex plane ξ+ iη (M1 is on Oξ and N1 is on Oη). If we avoid the

origin O with the help of a quarter-circle C with center O and radius ε, one has to

calculate
∫ dy

y along the contour followingM1ε; C; iε,N1:

∫ N1

M1

dy
y

=

∫ ε

yM1

dy
y
+

∫

C

dy
y
+

∫ i|yN1 |

iε

dy
y

= lg
| yN1 |
yM1

+ i
π
2
= lg

yN1
yM1

since lg yN1 = lg | yN1 |+iπ
2 according to the definition of the logarithm of complex

variable. The same reasoning is applicable between N2 and M2 where y becomes

real again and one has: ∫ yp

yk

dy
y

= lg
yp
yk
.

If the line E =U crosses the barrier at even number of points between (yk)

and (yp), the preceding example is applied without change, and the integral
∫ dy

y

will be given with the preceding formulas.

The conclusion that one can make from the preceding results is the following:
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M1ON in the complex plane ξ+ iη (M1 is on Oξ and N1 is on Oη). If we avoid the

origin O with the help of a quarter-circle C with center O and radius ε, one has to

calculate
∫ dy

y along the contour followingM1ε; C; iε,N1:

∫ N1

M1

dy
y

=

∫ ε

yM1

dy
y
+

∫

C

dy
y
+

∫ i|yN1 |

iε

dy
y

= lg
| yN1 |
yM1

+ i
π
2
= lg

yN1
yM1

since lg yN1 = lg | yN1 |+iπ
2 according to the definition of the logarithm of complex

variable. The same reasoning is applicable between N2 and M2 where y becomes

real again and one has: ∫ yp

yk

dy
y

= lg
yp
yk
.

If the line E =U crosses the barrier at even number of points between (yk)

and (yp), the preceding example is applied without change, and the integral
∫ dy

y

will be given with the preceding formulas.

The conclusion that one can make from the preceding results is the following:
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the integral
∫ dy

y has a finite value, because there is a kind of compensation of

the discontinuity by the function under the integral. In analogous way one can

show that all the integrals in the terms of the matrix M are finite, despite the

functions under the integrals being discontinuous at even number of points. One

can then always use the expressions m011 and m022 (39) and (39
′) and the others

mik(i,k = 1,2) (45) and (46) for the usual calculations of the passage of particles

trough barrier of any kind if the potential function does not have singular points in

the interval (x0x′). We will come back to that point later.

Note. – The problem of escape of particles from a potential well [7] is very

analogous to the problem of passage of particles through a potential barrier. If

the shape of the well is arbitrary, one can decompose it to rectangular barriers and

make the eliminations of the arbitrary amplitudes with the help of almost diagonal

matrices, as we have already done it for a potential barrier. We would not deal

with this problem here, since in the following chapter we will give the solutions

of the Schrödinger equation, and with it, the principal difficulty of the problem of

escape of particles from a potential well is removed.
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CHAPTER 3

3.1 Solution of the Schrödinger equation in the case of one variable [4]

We found the formulas which give the proportion of the reflected and the

transmitted particles, when they fall on a potential barrier. This was the general

problem of potential barriers. But those same formulas will serve us also to find

one important result: the solution of the wave equation. In effect, it is easy to

understand that the formulas determining the reflected and the transmitted waves

must contain in some way the solution of the wave equation.

The method we used consisted of decomposing a barrier of any form to small

elementary rectangular barriers. For each of them, the solution of the wave equa-

tion is known: this is a linear combination of two plane waves. When x varies for

example from xp to xp+1, the solution of the equation is, according to [8]:

Ψp(x) = Ape−iypx+Bpeiypx. (48)

But if the variations of x are bigger, the wave function Ψp(x) will not satisfy the

wave equation anymore. In this moment we have to take into account that Ap and

Bp cannot be considered as constants anymore. They will be functions of x. With

successive eliminations we have expressed the amplitudes Ap, Bp as functions of

the amplitudes A1, B1, in the first elementary barrier (x0x1) with the formula:
����
Ap
Bp

����=M(x1,xp)
����
A1
B1

����=MpMp−1 . . .M2M1

����
A1
B1

����

The elements of the matrix M, given by (46) and (47), are known functions of xp

since the upper limit in the integrals in (46) is yp, this is to say, a function of xp.

But xp can take all values between x0 and x′. Consequently, if one puts in (48)

the values of Ap and Bp as functions of x, one will express Ψp as a function of x,
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where x varies in the whole interval x0x′. By taking Ap, Bp of the last relation, one

has as solution of the wave equation (5):

Ψ(x) = [m11(x)e−iyx+m21(x)eiyx]A1+[m12(x)e−iyx+m22(x)eiyx]B1. (49)

Here one can consider the quantities A1 and B1 to be arbitrary and Ψ(x) will de-

pend on two arbitrary parameters. Ψ(x) (49) is then the general integral of the

wave equation (5).

When one applies this formula to the problem of barriers and when one writes

down the four conditions of continuity which connect the parameters A1,B1 with

the amplitudes A0,B0,C, there will be only one arbitrary parameter: the amplitude

A0 of the incident wave, as we have seen it for the rectangular barrier.

Let us retain now in (49) only the terms m011 and m
0
22 ofM. Ψ(x) will take the

form:

Ψ(x) = m011(x)e
−iyxA1+m022(x)e

iyxB1

By replacing m011 and m
0
22 with their expressions (39) and (39

′) and by setting

xp = x and xk = x1, one will have:




Ψ(x) = A1 4

√
E−U(x1)
E−U(x) e

−ix1y1−i
∫ x
x1

√
2m(E−U(x))dx

+B1
√

E−U(x1)
E−U(x) e

ix1y1+i
∫ x
x1

√
2m(E−U(x))dx

(50)

The comparison of (50) with (10) (p.3) gives immediately that each one of the two

terms ofΨ(x) (50) is identical up to a numerical factor, to one of the functions (10)

which one finds following the method of Brillouin-Wentzel, in the most common

case of its application. This was, as we know, the case where the approximation

of geometrical optics is valid.
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3.2 Verification that the function Ψ(x) (49) satisfies the wave equation

We have to show now, in a more direct manner, that the function Ψ (49)

satisfies the equation (18). But if we want to find directly the second derivative of

Ψ by differentiation of (50), that will be very difficult, since the termsm11, . . . ,m22

(47) are complicated functions of x.

One can give some general reasons why Ψ (49) is the solution of (18). First,

we have replaced the potential curve by a broken line such that the surface between

the latter and the axis OX tends to the surface of the barrier. Since the broken line

tends to the potential curve, in the limit when n → ∞, one has to expect that the

so-found solution will tend to the exact solution (18). A doubt may appear on first

glance, because the first derivatives of the function which represents the broken

line are discontinuous for n values of x. Nevertheless, this does not influence the

result, since the wave-function Ψ and its derivatives are required to be continuous

at the ends of the neighboring elementary barriers.

From another side, Ψ was constructed in such way that in each interval

(xp,xp+1), its variation will be like this of the exponential function. In this in-

tervalΨ obviously satisfies the equation, but only if we consider the potential as a

constant. The function Ψ is then composed of little arcs, glued one to another in a

way thatΨ and its derivative will be continuous. Since this is true for any division

of the interval x0x′, in the limit the functionΨ satisfies the equation for each value

of x. We have to then confirm this with calculations. But to find more directly that

the function Ψ satisfies equation (18), we will calculate its second derivative. For

a value xp of x one will have the value of d2Ψ
dx2 if one knows the values of Ψ for

three points of x: xp,xp+1,xp+2, this is to say: Ψ(xp),Ψ(xp+1),Ψ(xp+2). We have

to find the two first differences:

Ψ(xp+2)−Ψ(xp+1) and Ψ(xp+1)−Ψ(xp)
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and their difference divided by ∆x2p, (∆xp = xp+1−xp) will give a ratio whose limit

will be the value of d2Ψ
dx2 for x = xp. Or also one can calculate this value from the

known formula:
(
d2Ψ
dx2

)

xp

= lim
∆xp→0

Ψ(xp+2)−2Ψ(xp+1)+Ψ(xp)
∆x2p

. (51)

Without limiting the generality, we can consider that the points of division of the

interval x0x′ are equidistant and one can write:

xp+1 = xp+∆xp, xp+2 = xp+2∆xp.

According to formula (19), one can write for the functionΨ in the interval xpxp+1:

Ψ(x) = Ape−iypx+Bpeiypx. (2)

Let us substitute in (2) x= xp+1= xp+∆xp and then to expand the exponential
functions, conserving the infinitesimals up to second order. We find:

Ψ(xp+∆xp) = Ape−iypxp(1− iyp∆xp−
1
2
y2p∆x2p)+Bpeiypxp(1+ iyp∆xp−

1
2
y2p∆x2p). (52)

One will have for the values of Ψ in the interval (xp+1,xp+2):

Ψ(x) = Ap+1e−iyp+1x+Bp+1eiyp+1x. (53)

This formula will give for the value Ψ(xp+2):

Ψ(xp+2) = Ap+1e−iyp+1xp+2 +Bp+1eiyp+1xp+2 . (53′)

The equations (24) and (25) express the Ap+1,Bp+1 as functions of Ap,Bp. One

will find, for example, for Ap+1 in (24), by substituting in it:

xp+1 = xp+∆xp and yp+1 = yp+∆yp :

Ap+1 =
2yp+∆yp
2(yp+∆yp)

ei∆yp(xp+∆xp)Ap+
∆yp

2(yp+∆yp)
ei(2yp+∆yp)(xp+∆xp)Bp

=

(
1+

∆yp
2yp

)(
1+

∆yp
yp

)−1
ei∆yp(xp+∆xp)Ap+

∆yp
2yp

(
1+

∆yp
yp

)−1
ei(2yp+∆yp)(xp+∆xp)Bp.
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Let us expand the expressions in the last formula, keeping the terms up to second

order on ∆xp and ∆yp. One finds after simple but little long calculations:

Ap+1 = Ap

(
1+ ixp∆yp−

∆yp
2yp

+ i∆xp∆yp−
x2p∆y2p
2

−
ixp∆y2p
2yp

+
∆y2p
2y2p

)

+Bpe2iypxp
(

∆yp
2yp

+ i∆xp∆yp+
ixp∆y2p
2yp

−
∆y2p
2y2p

)

Naturally, if one keeps in the last formula only the terms of first order on ∆xp and

∆yp, the coefficients of Ap and Bp will be reduced to terms from the first row of

the matrixMj (33).

Let us calculate now the first term of the right side of (53′) by substituting in

it yp+1 = yp+∆yp,xp+2 = xp+ 2∆xp and Ap+1 according to the last formula. By

performing operations similar to the preceding ones, one finds:

Ap+1e−i(yp+∆yp)(xp+2∆xp) = Ape−ixpyp

(
1−

∆yp
2yp

−2iyp∆xp−2y2p∆x2p+
∆y2p
2y2p

)

+Bpeixpyp
(

∆yp
2yp

−
∆y2p
2y2p

)
.

Starting from formula (25) for Bp+1 just like we did above, we calculate the

second member of (52):

Bp+1ei(yp+∆yp)(xp+∆xp) =Ape−ixpyp

(
∆yp
2yp

−
∆y2p
2y2p

)

+Bpeixpyp
(
1−

∆yp
2yp

+2iyp∆xp+
∆y2p
2y2p

−2y2p∆x2p

)
.

Finally, the preceding formulas allow us to find for Ψ(xp+2)(53′):



Ψ(xp+2) = Ψ(xp+2∆xp) = Ape−ixpyp(1−2iyp∆xp−2y2p∆x2p)

+Bpeixpyp(1+2iyp∆xp−2y2p∆x2p).
(53′′)

Let us substitute in (51) the value of Ψ(xp+2) from (53′′), Ψ(xp+∆xp) from (52)

and Ψ(xp) from (2). We find easily:


(
d2Ψ
dx2

)
xp
= lim∆xp→0

Ape−ixpyp (−y2p∆x2p)+Bpeiypxp (−y2p∆x2p)
∆x2p

=−y2p
(
Ape−iypxp +Bpeiypxp

)
=−y2pΨ(xp).

(54)
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2yp
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As a consequence, the function Ψ(x) satisfies the wave equation (18).

3.3 Theorem on the coefficients of transparency and their eigenvalues

The considerations done above were valid for values of x within a bounded

interval x0x′. The series we found are convergent, if the functionU(x) is finite. It

is not necessary for the function U ′(x) = dU
dx to be continuous in the interval x0x

′,

as long as it is bounded. U(x) may me then composed of finite number of arcs of

different curves and the solution of the wave equation will always be expressed by

(49).

Let us now take the limit x0 → −∞,x′ → +∞. The function Ψ(x) (49) still

satisfies the equation (18) but it will be generally infinite for x=±∞. If the func-

tionU(x) tends to zero for x→±∞, the wave function remains finite for x=±∞

. One can show this just like we did for the matrix M (29′), finding a dominant

matrix. But if U(x) behaves differently at infinity, the wave function Ψ (49) will

not be bounded. Nevertheless, in the Wave Mechanics one look for functions,

which are null at infinity, which can be realized for certain values of the energy

E. Obviously, it is not easy to find in the general case the eigenvalues of the en-

ergy from equation (49). We show a method permitting us to find in principle the

eigenvalues and with its help we find approximate eigenvalues.

If one recalls formula (12) and (16) (Ch. 1) which give the coefficients of

transmission respectively for a rectangular barrier and for a barrier of the harmonic

oscillator type, one sees that the coefficient T , which measures the transparency

of the barrier for incident particles, is a function of the energy E. This function

admits successive maximums for a series of values of E, which are exactly the

eigenvalues of the wave equation. We will see that this property remains true for

any shape of the barrier.

Let us take a barrier defined by a potential functionU(x), between two points
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M1 and M2 with abscissa x1 = −l and x2 = l. In this interval the wave equation

will be:
d2Ψ
dx2

+
8π2m
h2

[E−U(x)]Ψ = 0. (55)

Let us suppose that to the left of M1 and to the right of M2, the potential is zero

and that the incident wave propagate in the direction OX . To the left of M1, the

total waveΨ1(x) will be a sum of the incident wave and of the reflected wave with

corresponding amplitudes A and B. On can write:

Ψ1(x) = Ae−ikx+Beikx, k =
2π
h

√
2mE (56)

The transmitted wave Ψ3 to the right of M2 will be of the form:

Ψ3(x) = Feikx. (57)

In the region M1M2, the general solution of the wave equation can be represented

as a linear combination of two independent solutions, the waves ϕ(x) and χ(x):

Ψ2(x) =Cϕ(x)+Dχ(x) (58)

On the two ends of the barrier one has to write the two groups of equations,

expressing the continuity of the functions and their derivatives:



Aeikl +Be−ikl =Cϕ(−l)+Dχ(−l)

−ikAeikl + ikBe−ikl =Cϕ′e(−l)+Dχ′(−l)
(59)




Cϕ(l)+Dχ(l) = Fe−ikl

Cϕ′(l)+Dχ′(l) =−ikFe−ikl
(60)

The problem consists of determining the amplitude of the reflected wave B

and that of the transmitted wave F , in order to form the coefficient of reflection R

and of transmission T .
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As a consequence, the function Ψ(x) satisfies the wave equation (18).

3.3 Theorem on the coefficients of transparency and their eigenvalues
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dx to be continuous in the interval x0x

′,

as long as it is bounded. U(x) may me then composed of finite number of arcs of

different curves and the solution of the wave equation will always be expressed by

(49).
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The problem consists of determining the amplitude of the reflected wave B

and that of the transmitted wave F , in order to form the coefficient of reflection R

and of transmission T .

49



50

To simplify the writing we introduce the following notations:



ϕ(−l) = ϕ−, ϕ′(−l) = ϕ′
−, ϕ(l) = ϕ+, ϕ′(l) = ϕ′

+

χ(−l) = χ−, χ′(−l) = χ′
−, χ(l) = χ+, χ′(l) = χ′

+

(61)

Let us form the determinant ∆(−l) from the coefficientsC and D of (59):

∆(−l) = ∆− =

����
ϕ− χ−
ϕ′
− χ′

−

����= ϕ−χ′
− −ϕ′

−ϕ− (62)

and similarly ∆(l) = ∆+ from (60).

From (68) one easily gets:


C = 1

∆−
[Aeikl(χ′

−+ ikχ−)+Be−ikl(χ′
− − ikχ−)]

D= 1
∆−
[−Aeikl(ϕ′

−+ ikϕ−)+Be−ikl(ikϕ−−ϕ′
−)]

(63)

Equations (60) will give for the same quantities:


C = Fe−ikl

∆+
(χ′

++ ikχ+)

D= −Fe−ikl

∆+
(ϕ′

++ ikϕ+)

(64)

By making equal the values of C and D according to (63) and (64), one finds the

equations:



∆+e−ikl(χ′
− − ikχ−)B−∆−e−ikl(χ′

++ ikχ+)F =−∆+eikl(χ′
−+ ikχ−)A

∆+e−ikl(ikϕ−−ϕ′
−)B−∆−e−ikl(ϕ′

++ ikϕ+)F = ∆+eikl(ϕ′
−+ ikϕ−)A

(65)

The determinant d of the coefficients B and F of (65) is then:
{
d = ∆+∆−e−2ikl[(χ′

− − ikχ−)(ϕ′
++ ikϕ+)+(ikϕ−−ϕ′

−)(χ′
++ ikχ+)] (66)

and one will have for the values of B and F , from (65):
{
B= ∆+∆−

d A[−(χ′
−+ ikχ−)(ϕ′

++ ikϕ+)+(ϕ′
−+ ikϕ−)(χ′

++ ikχ+)]. (67)
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{
F = (∆+)

2

d A[(χ′
− − ikχ−)(ϕ′

−+ ikϕ−)+(ikϕ−−ϕ′
−)(χ′

−+ ikχ−)]. (68)

We will now want to evaluate the orders of magnitude of | B | and | F | depending

of the values of the energy E of the incident particles. Let us consider the case

where l is very big, this is to say, the base of the barrier if very long. Thus, to

calculate B and F from (67) and (68), we will need only the asymptotic values of

ϕ and χ.

Since the wave equation (55) coincides with its conjugated one, it can be

shown easily [3], that the determinant ∆ (62) is constant for every value of x,

where the solutions ϕ and χ are independent. But it is easy to prove this property

directly. In effect, let us replace in equation (55) successively the functions χ and

ϕ. We multiply the first of this equations by ϕ, the second by χ and we subtract

them. One will have:

0= ϕχ′′ −χϕ′′ =
d
dx

(ϕχ′ −ϕ′χ) =
d
dx

∆. (69)

As a consequence, the determinant ∆ is constant:

∆ = ϕχ′ −χϕ′ = ϕχ
(

χ′

χ
− ϕ′

ϕ

)
= cte. (70)

We can now consider that the notations (61) represent the asymptotic values of

ϕ and χ for x →−∞ and x → +∞ respectively. The equality (70) shows that the

asymptotic values ϕ− and χ− for example, cannot vanish simultaneously, since ∆−

will be null in the that case. ϕ− and χ− cannot be also infinitely big simultaneously,

since according to (70) the expression in the parentheses should tend to zero and

one gets lgχ = lgϕ, thus the asymptotic values ϕ− and χ− will not be independent.

On the other side, ϕ− and χ− can be finite simultaneously, which happens when the

wave equation has a known spectrum. The preceding reasoning can be repeated

without change for ϕ+ and χ+.
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− − ikχ−)(ϕ′
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−)(χ′
++ ikχ+)] (66)

and one will have for the values of B and F , from (65):
{
B= ∆+∆−

d A[−(χ′
−+ ikχ−)(ϕ′

++ ikϕ+)+(ϕ′
−+ ikϕ−)(χ′

++ ikχ+)]. (67)
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{
F = (∆+)
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d A[(χ′
− − ikχ−)(ϕ′

−+ ikϕ−)+(ikϕ−−ϕ′
−)(χ′

−+ ikχ−)]. (68)

We will now want to evaluate the orders of magnitude of | B | and | F | depending

of the values of the energy E of the incident particles. Let us consider the case

where l is very big, this is to say, the base of the barrier if very long. Thus, to

calculate B and F from (67) and (68), we will need only the asymptotic values of

ϕ and χ.

Since the wave equation (55) coincides with its conjugated one, it can be

shown easily [3], that the determinant ∆ (62) is constant for every value of x,

where the solutions ϕ and χ are independent. But it is easy to prove this property

directly. In effect, let us replace in equation (55) successively the functions χ and

ϕ. We multiply the first of this equations by ϕ, the second by χ and we subtract

them. One will have:

0= ϕχ′′ −χϕ′′ =
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(
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We can now consider that the notations (61) represent the asymptotic values of

ϕ and χ for x →−∞ and x → +∞ respectively. The equality (70) shows that the

asymptotic values ϕ− and χ− for example, cannot vanish simultaneously, since ∆−

will be null in the that case. ϕ− and χ− cannot be also infinitely big simultaneously,

since according to (70) the expression in the parentheses should tend to zero and

one gets lgχ = lgϕ, thus the asymptotic values ϕ− and χ− will not be independent.

On the other side, ϕ− and χ− can be finite simultaneously, which happens when the

wave equation has a known spectrum. The preceding reasoning can be repeated

without change for ϕ+ and χ+.
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Taking into account (70) and (66), one can write for F (68):

| F |=
����A

(χ′
− − ikχ−)(ikϕ−+ϕ′

−)+(χ′
−+ ikχ−)(ikϕ−−ϕ′

−)

(χ′
− − ikχ−)(ikϕ++ϕ′

+)+(χ′
++ ikχ+)(ikϕ−−ϕ′

−)

����=
����A

a1b1+a2b2
a1b′1+a′2b2

���� .
(71)

where one replaces, in order to shorten the writing, the expressions in the paren-

theses in the numerator with the letters a1,b1,a2,b2, respectively, and the same for

the denominator.

Let us suppose that the wave equation has a discrete spectrum and let us

consider the case, where the energy E is not equal to one of its eigenvalues. Taking

into account the preceding reasoning, one can ask, without losing the generality:



ϕ− → ∞, ϕ′
− → ∞, χ− → 0, χ′

− → 0

ϕ+ → 0, ϕ′
+ → 0, χ+ → ∞, χ′

+ → ∞
(72)

Using (71), one sees that the expressions a1 and a2 are of the same order of mag-

nitude, like b1 and b2 from the other side, and in the numerator we keep only the

expression a1b1 which is of the order of the expression a2b2. It also follows from

the formulas (72) that the term a1b′1 in the denominator is infinitely small com-

pared to the term a′2b2 and we will keep only the latter. Finally, the approximate

value of | F | (71) will be:
{
| F |∼

���A (χ′
−−ikχ−)(ikϕ−+ϕ′

−)
(χ′

++ikχ+)(ikϕ−−ϕ′
−)

���∼
���Aχ′

−−ikχ−
χ′
++ikχ+

���=
���Aa1b1

a1b′1

��� (73)

From (72), this is an extremely small value, since the numerator is infinitely small

and the denominator is infinitely big.

Let us now work in the case, where E is equal to one of the eigenvalues of

equation (55). If E is not a double eigenvalue, one of the functions, for example
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ϕ, will be an eigenfunction. One will now have, on the place of (72):



ϕ̄− → 0, ϕ̄′
− → 0, χ̄− → ∞, χ̄′

− → ∞

ϕ̄+ → 0, ϕ̄′
+ → 0, χ̄+ → ∞, χ̄′

+ → ∞
(72′)

where the bar above the functions is to distinguish their values from those in (72).

But since the values (72′), like (72) are asymptotic values of the solutions of equa-

tion (55), we must have that ϕ̄− is of the order of χ−, ϕ̄− ∼ χ−, and similarly:

ϕ̄+ ∼ ϕ+, χ̄− ∼ ϕ−, χ̄+ ∼ χ+ (72′′)

Let us now recall formula (71). There also, the terms a1b1 and a2b2 are of the

same order, and one will have, keeping only the first one:
{
| F̄ |∼

���A (χ̄′
−−ikχ̄−)(ikϕ̄−+ϕ̄′

−)

(χ̄′
−−ikχ̄−)(ikϕ̄++ϕ̄′

+)+(χ̄′
++ikχ̄+)(ikϕ̄−−ϕ̄′

+)

���=
���A ā1b̄1

ā1b̄1
′
+ā′2b̄2

��� (73′)

With the help of (72′) and (72′′) one can write:
{
| F̄ |∼

���A (ϕ̄′
−−ikϕ̄−)(ikχ̄−+χ̄′

−)

(ϕ̄′
+−ikϕ̄+)(ϕ̄′

−+ikϕ̄−)+(χ̄′
++ikχ̄+)(ikχ̄−−χ̄′

−)

��� . (74)

The numerator of (74) and of (73) are of the same order, while the denominator

of (73) is infinitely big compared to the two terms of the denominator of (74), like

formulas (72) show. Thus the value of F (73) is infinitely small compared to the

value of F̄ (74), which can be a finite number, of the order of unity. One can,

as consequence, formulate the theorem: The coefficient of transmission T = |F |2
|A|2 ,

which characterizes the transparency of the barrier, has successive maximums for

these values of the energy E, which are eigenvalues of equation (55).This is a

resonance phenomenon.

The same study on the coefficients B (67), gives that B is of the order of unity,

since its numerator and its denominator are of the same order. But because of the

sum R+T = |B|2+|F |2
|A|2 = 1, the coefficient Rwill have minimums for these values of
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The numerator of (74) and of (73) are of the same order, while the denominator

of (73) is infinitely big compared to the two terms of the denominator of (74), like

formulas (72) show. Thus the value of F (73) is infinitely small compared to the

value of F̄ (74), which can be a finite number, of the order of unity. One can,

as consequence, formulate the theorem: The coefficient of transmission T = |F |2
|A|2 ,

which characterizes the transparency of the barrier, has successive maximums for

these values of the energy E, which are eigenvalues of equation (55).This is a

resonance phenomenon.

The same study on the coefficients B (67), gives that B is of the order of unity,

since its numerator and its denominator are of the same order. But because of the

sum R+T = |B|2+|F |2
|A|2 = 1, the coefficient Rwill have minimums for these values of
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E, which are equal to the eigenvalues of equation (55). However, these minimums

are much less expressed than the maximums of T .

Let us now suppose that equation (55) has a known spectrum. Then for all

the values of E in the interval, finite or infinite, (55) will have at least one solution,

whose asymptotic values are finite. Since the determinant ∆ (62) is constant, one

can have only two possibilities: either the asymptotic values ϕ−,χ− and ϕ+,χ+

are finite simultaneously, or ϕ−,ϕ+ are zero and χ−,χ+ are infinite. In the two

cases, by making the same consideration as above, one finds for F (68) and thus

for T , finite values. If the coefficient T , which is a function of E and of l, allows

maximums and minimums with respect to E, those maximums and minimums are

of the same order of magnitude, for all the fixed values of l. On the other side,

if (55) has a discrete spectrum, and if l has a fixed value which is very big, the

maximums of T with respect to E have finite values, while their minimums are

very small and they tend to zero when l tends to infinity.

The property stated above can then serve us to search for eigenvalues of the

wave equation. – For this, one has to form the coefficient of transparency T for a

barrier with very long base and to search for the roots Ek of the equation ∂
∂E T = 0.

If the value of T is finite for a value of E between two arbitrary roots, Ek and Ej,

those roots belong to a discrete spectrum and vice versa.

Since in the applications one uses an approximate function, one will find

approximate values for Ek.

By substituting the so found values of Ek in (49), one will find the eigenfunc-

tionsΨk. If the base (x0x′) of our barrier increases infinitely, one has to expect that

theΨk will be finite at finite distances from the origin O and very small at infinity.

The other functions Ψ (49) which are not eigenfunctions should, on the contrary,

flatten on the axis OX and become null when x1 → −∞ and x′ → +∞. One will
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have a phenomenon analogous to the paradox of the harmonic oscillator [7].

The function (50), with whose help we often performed the approximate cal-

culations, represents a first approximation of the wave function, and one has to

take into account the degree of approximation which one is limited to by this form

of the wave function. From (50) it can be seen that the exponents in the members

of Ψ(x) contain the integral of Maupertuis (37′′). This indicates already that the

function (50) should be valid in the approximation of geometrical optics. We have

also seen that the two members of (50) coincide, up to a numerical factor, with the

function (10) (p.3), given by the method of Brillouin-Wentzel. The appearance of

this last function shows that the approximation of geometrical optics is realized,

this-is-to-say that the condition 1
n
dn
dx ≪ 1 exists.

Let us also compare directly the approximate formula (50) with the exact

formula (49). To form the function (50) we retained only the terms m011 and m
0
22 of

the matrix M (29′). Recalling formulas (46) and (47), one sees that all the terms

in (47) contain integrations with respect to y, or with respect to x, since dy= y′dx.

If the barrier is rectangular, the potential is constant, dy= 0, thus all the integrals

are null. The only terms of the matrix M (29′) which will be different of zero are

m011 and m
0
22 for which one will have: m

0
11 = m022 = 1, as equations (39) and (39

′)

show. The matrix M will become the unity matrix, and consequently, the incident

plane wave Ψ0 will remain monochromatic after its entrance in the barrier. It

is thus clear that if the potential U(x) varies slowly, the terms m011 and m022 will

dominate among all the mαβ (α,β = 1,2) from equations (47). Let us take the

term m112 (40
′) and let us substitute in the integral dy= y′dx. One sees easily that

this term can be ignored compared to m011 and m022, if
y′

y ≪ 1, or also 1
n
dn
dx ≪ 1

(since y is proportional to n), this is to say, if the index of refraction n varies

slowly. Obviously it is more difficult to express using this method, than using the
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E, which are equal to the eigenvalues of equation (55). However, these minimums

are much less expressed than the maximums of T .

Let us now suppose that equation (55) has a known spectrum. Then for all

the values of E in the interval, finite or infinite, (55) will have at least one solution,

whose asymptotic values are finite. Since the determinant ∆ (62) is constant, one

can have only two possibilities: either the asymptotic values ϕ−,χ− and ϕ+,χ+

are finite simultaneously, or ϕ−,ϕ+ are zero and χ−,χ+ are infinite. In the two

cases, by making the same consideration as above, one finds for F (68) and thus

for T , finite values. If the coefficient T , which is a function of E and of l, allows

maximums and minimums with respect to E, those maximums and minimums are

of the same order of magnitude, for all the fixed values of l. On the other side,

if (55) has a discrete spectrum, and if l has a fixed value which is very big, the

maximums of T with respect to E have finite values, while their minimums are

very small and they tend to zero when l tends to infinity.

The property stated above can then serve us to search for eigenvalues of the

wave equation. – For this, one has to form the coefficient of transparency T for a

barrier with very long base and to search for the roots Ek of the equation ∂
∂E T = 0.

If the value of T is finite for a value of E between two arbitrary roots, Ek and Ej,

those roots belong to a discrete spectrum and vice versa.

Since in the applications one uses an approximate function, one will find

approximate values for Ek.

By substituting the so found values of Ek in (49), one will find the eigenfunc-

tionsΨk. If the base (x0x′) of our barrier increases infinitely, one has to expect that

theΨk will be finite at finite distances from the origin O and very small at infinity.

The other functions Ψ (49) which are not eigenfunctions should, on the contrary,

flatten on the axis OX and become null when x1 → −∞ and x′ → +∞. One will

54

have a phenomenon analogous to the paradox of the harmonic oscillator [7].

The function (50), with whose help we often performed the approximate cal-

culations, represents a first approximation of the wave function, and one has to

take into account the degree of approximation which one is limited to by this form

of the wave function. From (50) it can be seen that the exponents in the members

of Ψ(x) contain the integral of Maupertuis (37′′). This indicates already that the

function (50) should be valid in the approximation of geometrical optics. We have

also seen that the two members of (50) coincide, up to a numerical factor, with the

function (10) (p.3), given by the method of Brillouin-Wentzel. The appearance of

this last function shows that the approximation of geometrical optics is realized,

this-is-to-say that the condition 1
n
dn
dx ≪ 1 exists.

Let us also compare directly the approximate formula (50) with the exact

formula (49). To form the function (50) we retained only the terms m011 and m
0
22 of

the matrix M (29′). Recalling formulas (46) and (47), one sees that all the terms

in (47) contain integrations with respect to y, or with respect to x, since dy= y′dx.

If the barrier is rectangular, the potential is constant, dy= 0, thus all the integrals

are null. The only terms of the matrix M (29′) which will be different of zero are

m011 and m
0
22 for which one will have: m

0
11 = m022 = 1, as equations (39) and (39

′)

show. The matrix M will become the unity matrix, and consequently, the incident

plane wave Ψ0 will remain monochromatic after its entrance in the barrier. It

is thus clear that if the potential U(x) varies slowly, the terms m011 and m022 will

dominate among all the mαβ (α,β = 1,2) from equations (47). Let us take the

term m112 (40
′) and let us substitute in the integral dy= y′dx. One sees easily that

this term can be ignored compared to m011 and m022, if
y′

y ≪ 1, or also 1
n
dn
dx ≪ 1

(since y is proportional to n), this is to say, if the index of refraction n varies

slowly. Obviously it is more difficult to express using this method, than using the
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Brillouin-Wentzel method, the exact condition which shows the case where the

terms m112 and m
1
21 are to be ignored compared to m

0
11 and m

0
22, since m

0
11,m

0
22 and

m112,m
1
21 are not connected with a simple relation.

In the particular potential barrier problems, one uses often the form (10) (p.3)

of the wave function given by the Brillouin-Wentzel method. We have seen (p.3)

that this formula is not surely applicable in the neighborhood of the points P(x),

for which E = U(x). Still this form of Ψ, applied to calculations of the coef-

ficients of reflection and transmission, always gives the phenomenon in general,

even though the barrier is cut at least at two points by the relationU = E. But after

the considerations we did (p.25) on the terms m011 and m
0
22 for this case, it follows

that the use of the function (10) or similarly of the function (50) is legitimate for

all the usual calculations on potential barriers.

3.4 Singular points of Ψ(x). Turning points

We have seen that the points P(x1) and Q(x2) at which the relation U = E

cuts the barrier, represent singular points of the wave function Ψ (49). When we

apply (49) to the calculation of the coefficients of reflection R and the coefficient

of transmission T , this discontinuity does not bother us at all, as we have seen.

But the function (49), such as it is, does not correspond to the definition of the

wave function in the interval (x0x′), since it becomes infinite at the points P and

Q. We have to now work out this difficulty.

The existence of discontinuity of the function Ψ(x) at the points P and Q

proves that in a neighborhood of the points P and Q, one cannot decompose the

given barrier to elementary rectangular barriers. The wave equation shows, ac-

tually, that the wave function in a domain of the constant potential U < E, but

very close to E (U ∼ E), is a periodic function varying slowly. For the limit case,

E =U , it becomes a linear function of x and it is not anymore, strictly speaking
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a periodic function. The elementary rectangular barrier which contains the point

P must then be replaced by another elementary barrier, formed by a curved arc,

which will not be too different from the corresponding arc of the potential curve

(the arcM1N1 on Fig. 2 2). We know [9] that the exact shape of the potential curve

U around the edges of a barrier occurs much in the formulas of transparency of

the barriers, if the energy E of the plane wave is close to the values of U on the

edges of the barrier.

For this reason, we can replace the arcM1N1 (fig. 2) by a rectilinear segment

M1N1 and make the calculations of the barrier with this elementary barrier on the

place of the rectangular barrier. But if the potentialU is a linear function of x, the

solution of the wave equation is given by the Bessel functions J 1
3
and J− 1

3
, and the

calculations become more complicated. We will omit them for the moment and

we will search for an approximate solution, valid in the neighborhood of P and Q,

and then we will find the exact solution valid around P and Q.

Since at the points P andQ one has E =U , the wave equation (18) shows that

d2Ψ
dx2 = 0, this-is-to-say the function Ψ has two inflexion points P(x1) and Q(x2),

and one can represent the function very approximately in the region (x1−ε,x1+ε)

(ε is a small positive finite number) with the linear function Ψ(x) = ax+ b. The

decomposition of the barrier to rectangular barriers is valid outside of the domain

(x1− ε,x1+ ε). One has to write on the edges of the rectilinear barrier, with base

(x1−ε,x1+ε), the conditions of continuity and to eliminate the quantities a and b.

This way, the amplitudes Ap,Bp which we find by decomposing the given barrier

outside the interval (x1− ε,x1+ ε) and (x2− ε,x2+ ε), are related to each other

by the intermediary function ax+b, where a and b are already known. The same

operation should be performed at the point x2.

The wave function Ψ(x) constructed with the help of its transformation ma-
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Brillouin-Wentzel method, the exact condition which shows the case where the

terms m112 and m
1
21 are to be ignored compared to m

0
11 and m

0
22, since m

0
11,m

0
22 and

m112,m
1
21 are not connected with a simple relation.

In the particular potential barrier problems, one uses often the form (10) (p.3)

of the wave function given by the Brillouin-Wentzel method. We have seen (p.3)

that this formula is not surely applicable in the neighborhood of the points P(x),

for which E = U(x). Still this form of Ψ, applied to calculations of the coef-

ficients of reflection and transmission, always gives the phenomenon in general,

even though the barrier is cut at least at two points by the relationU = E. But after

the considerations we did (p.25) on the terms m011 and m
0
22 for this case, it follows

that the use of the function (10) or similarly of the function (50) is legitimate for

all the usual calculations on potential barriers.

3.4 Singular points of Ψ(x). Turning points

We have seen that the points P(x1) and Q(x2) at which the relation U = E

cuts the barrier, represent singular points of the wave function Ψ (49). When we

apply (49) to the calculation of the coefficients of reflection R and the coefficient

of transmission T , this discontinuity does not bother us at all, as we have seen.

But the function (49), such as it is, does not correspond to the definition of the

wave function in the interval (x0x′), since it becomes infinite at the points P and

Q. We have to now work out this difficulty.

The existence of discontinuity of the function Ψ(x) at the points P and Q

proves that in a neighborhood of the points P and Q, one cannot decompose the

given barrier to elementary rectangular barriers. The wave equation shows, ac-

tually, that the wave function in a domain of the constant potential U < E, but

very close to E (U ∼ E), is a periodic function varying slowly. For the limit case,

E =U , it becomes a linear function of x and it is not anymore, strictly speaking
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a periodic function. The elementary rectangular barrier which contains the point

P must then be replaced by another elementary barrier, formed by a curved arc,

which will not be too different from the corresponding arc of the potential curve

(the arcM1N1 on Fig. 2 2). We know [9] that the exact shape of the potential curve

U around the edges of a barrier occurs much in the formulas of transparency of

the barriers, if the energy E of the plane wave is close to the values of U on the

edges of the barrier.

For this reason, we can replace the arcM1N1 (fig. 2) by a rectilinear segment

M1N1 and make the calculations of the barrier with this elementary barrier on the

place of the rectangular barrier. But if the potentialU is a linear function of x, the

solution of the wave equation is given by the Bessel functions J 1
3
and J− 1

3
, and the

calculations become more complicated. We will omit them for the moment and

we will search for an approximate solution, valid in the neighborhood of P and Q,

and then we will find the exact solution valid around P and Q.

Since at the points P andQ one has E =U , the wave equation (18) shows that

d2Ψ
dx2 = 0, this-is-to-say the function Ψ has two inflexion points P(x1) and Q(x2),

and one can represent the function very approximately in the region (x1−ε,x1+ε)

(ε is a small positive finite number) with the linear function Ψ(x) = ax+ b. The

decomposition of the barrier to rectangular barriers is valid outside of the domain

(x1− ε,x1+ ε). One has to write on the edges of the rectilinear barrier, with base

(x1−ε,x1+ε), the conditions of continuity and to eliminate the quantities a and b.

This way, the amplitudes Ap,Bp which we find by decomposing the given barrier

outside the interval (x1− ε,x1+ ε) and (x2− ε,x2+ ε), are related to each other

by the intermediary function ax+b, where a and b are already known. The same

operation should be performed at the point x2.

The wave function Ψ(x) constructed with the help of its transformation ma-
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trices and the matrix M is known at the points P and Q, but it is not represented

by the same analytical expression in the whole domain x0x′ in which the barrier

extends. It is linear in the regions (x1−ε,x1+ε) and (x2−ε,x2+ε) and it is given

by (49) in the rest of the interval (x0x′).

3.5 A second method of solving the wave equation

Another difficulty arises at the points which are singular for the potential.

We assume that those points are poles. Let the point O be a pole of order p of the

functionU(x). Around the point O the decomposition of the barrier to elementary

barriers is fictitious. One can see that if we make that decomposition near the point

O, this point will be a singular point for the function Ψ(x) (49), which we have

learned to construct with the help of elementary barriers. We have to then change

the method in neighborhood of O.

We will sketch another method to solve the equation (18). With this method,

we will find the solution which remains finite in neighborhood of O.

The general integral of (18) contains two arbitrary constants. As a conse-

quence, trough any two given points passes an integral curve, or also, trough each

given point passes an integral curve, whose tangent at the point has some given

angle with the axis OX . Let P0(x0) be the given point. The function Ψ and its

derivative Ψ′ take arbitrary values Ψ0 and Ψ′
0 at P0. For an increment ∆x0 of x,

one will find the values Ψ1 and Ψ′
1 of Ψ and Ψ′ given by the formulas:





Ψ1 = Ψ0+∆x0Ψ′
0

Ψ′
1 = Ψ′

0+∆xΨ′′
0 = Ψ′

0− f0Ψ0

(75)

In the last formula we replaced Ψ′′
0 by −y0Ψ0 and set y20 = f0. Ψ1 and Ψ′

1 are

linear functions of Ψ0 and Ψ′
0 and one can replace (75) with the vector relation:����

Ψ1
Ψ′
1

����= N0

����
Ψ0
Ψ′
0

����=
����

1 ∆x0
− f0∆x0 1

����
����

Ψ0
Ψ′
0

���� (76)
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where N0 is an almost diagonal matrix. With the same relations one finds the

values:

Ψ2 = Ψ(x0+2∆x0) and Ψ′
2 = Ψ′(x0+2∆x0)

as functions of Ψ1 and Ψ′
1. Eliminating the quantities Ψ1 and Ψ′

1 one will have

a relation between Ψ2,Ψ′
2 and Ψ0,Ψ′

0. Like with the quantities Aj,Bj (p.13) after

successive eliminations of Ψk,Ψ′
k, one will end with the following formula:

����
Ψp
Ψ′

p

����= N
����

Ψ0
Ψ′
0

���� (77)

where :

N =
p

∏
i=1

Ni =
p

∏
i=1

����
1 ∆xi

− fi∆xi 1

���� (78)

is the transformation matrix. Since the matrix Ni resembles to the matrix B (??),

the product N will be formed like the matrix product M (29′). The ∆xi from Ni

correspond to the factors ρi in the elements of Mi (33). Therefore, the four ele-

ments nαβ(α,β = 1,2) of N will be the sums whose members contain the factors

∆xi,∆xi∆xk, . . .. In the element n11 of the matrix N, product of p matrices Ni we

indicate with n2k,p11 the term which is the sum of the terms containing 2k factors ∆x.

One finds (as in (41) and (41′)) the recurrence formulas:



n2k,p11 = n2k,p−111 +n2k−1,p−121 ∆xp

n2k+1,p12 = n2k+1,p−112 +n2k,p−122 ∆xp

n2k+1,p21 =−n2k,p−111 fp∆xp+n2k+1,p−121

n2k,p22 =−n2k−1,p−112 fp∆xp+n2k,p−122

(79)

where n2k+1,p12 ,n2k+1,p21 ,n2k,p22 are defined the same way as the element n2k,p11 . On the

equations (79) one can perform the same operations which follow the equations

(41) and one can represent the nαβ as explicit functions of x. Like for (42) one
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trices and the matrix M is known at the points P and Q, but it is not represented

by the same analytical expression in the whole domain x0x′ in which the barrier

extends. It is linear in the regions (x1−ε,x1+ε) and (x2−ε,x2+ε) and it is given

by (49) in the rest of the interval (x0x′).

3.5 A second method of solving the wave equation

Another difficulty arises at the points which are singular for the potential.

We assume that those points are poles. Let the point O be a pole of order p of the

functionU(x). Around the point O the decomposition of the barrier to elementary

barriers is fictitious. One can see that if we make that decomposition near the point

O, this point will be a singular point for the function Ψ(x) (49), which we have

learned to construct with the help of elementary barriers. We have to then change

the method in neighborhood of O.

We will sketch another method to solve the equation (18). With this method,

we will find the solution which remains finite in neighborhood of O.

The general integral of (18) contains two arbitrary constants. As a conse-

quence, trough any two given points passes an integral curve, or also, trough each

given point passes an integral curve, whose tangent at the point has some given

angle with the axis OX . Let P0(x0) be the given point. The function Ψ and its

derivative Ψ′ take arbitrary values Ψ0 and Ψ′
0 at P0. For an increment ∆x0 of x,

one will find the values Ψ1 and Ψ′
1 of Ψ and Ψ′ given by the formulas:





Ψ1 = Ψ0+∆x0Ψ′
0

Ψ′
1 = Ψ′

0+∆xΨ′′
0 = Ψ′

0− f0Ψ0

(75)

In the last formula we replaced Ψ′′
0 by −y0Ψ0 and set y20 = f0. Ψ1 and Ψ′

1 are

linear functions of Ψ0 and Ψ′
0 and one can replace (75) with the vector relation:����

Ψ1
Ψ′
1

����= N0

����
Ψ0
Ψ′
0

����=
����

1 ∆x0
− f0∆x0 1

����
����

Ψ0
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0

���� (76)
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where N0 is an almost diagonal matrix. With the same relations one finds the

values:

Ψ2 = Ψ(x0+2∆x0) and Ψ′
2 = Ψ′(x0+2∆x0)

as functions of Ψ1 and Ψ′
1. Eliminating the quantities Ψ1 and Ψ′

1 one will have

a relation between Ψ2,Ψ′
2 and Ψ0,Ψ′

0. Like with the quantities Aj,Bj (p.13) after

successive eliminations of Ψk,Ψ′
k, one will end with the following formula:

����
Ψp
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p
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Ψ0
Ψ′
0

���� (77)

where :

N =
p

∏
i=1

Ni =
p

∏
i=1

����
1 ∆xi

− fi∆xi 1

���� (78)

is the transformation matrix. Since the matrix Ni resembles to the matrix B (??),

the product N will be formed like the matrix product M (29′). The ∆xi from Ni

correspond to the factors ρi in the elements of Mi (33). Therefore, the four ele-

ments nαβ(α,β = 1,2) of N will be the sums whose members contain the factors

∆xi,∆xi∆xk, . . .. In the element n11 of the matrix N, product of p matrices Ni we

indicate with n2k,p11 the term which is the sum of the terms containing 2k factors ∆x.

One finds (as in (41) and (41′)) the recurrence formulas:



n2k,p11 = n2k,p−111 +n2k−1,p−121 ∆xp

n2k+1,p12 = n2k+1,p−112 +n2k,p−122 ∆xp

n2k+1,p21 =−n2k,p−111 fp∆xp+n2k+1,p−121

n2k,p22 =−n2k−1,p−112 fp∆xp+n2k,p−122

(79)

where n2k+1,p12 ,n2k+1,p21 ,n2k,p22 are defined the same way as the element n2k,p11 . On the

equations (79) one can perform the same operations which follow the equations

(41) and one can represent the nαβ as explicit functions of x. Like for (42) one
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finds initially:

n2k11(xp) =
∫ xp

x0
n2k−121 (x)dx (80)

and by replacing n2k−121 (x), . . . one obtains the formula:

n2k11(xp) = (−1)k
∫ xp

x0
dx(2k−1)

∫ x(2k−1)

x0
f (x(2k−2))dx(2k−2)

∫ x(2k−2)

x0
. . .

∫ x(1)

x0
f (x)dx (81)

where we have denoted with upper indexes the variables which replace formally

the variable x. One will have also the three equations which correspond to (46):




n2k+112 (xp) = (−1)k
∫ xp
x0 dx

(2k) ∫ x(2k)
x0 f dx(2k−1)

∫ x(2k−1)
x0 . . .

∫ x(1)
x0 dx

n2k+121 (xp) = (−1)k
∫ xp
x0 f dx(2k)

∫ x(2k)
x0 dx(2k−1)

∫ x(2k−1)
x0 . . .

∫ x(1)
x0 f dx

n2k22(xp) = (−1)k
∫ xp
x0 f dx(2k−1)

∫ x(2k−1)
x0 dx(2k−2)

∫ x(2k−2)
x0 . . .

∫ x(1)
x0 dx

(82)

and the four elements of N will be given like in (47) by:

n11 =
∞

∑
k=0

n2k11, n12 =
∞

∑
k=0

n2k+112 , n21 =
∞

∑
k=0

n2k+121 , n22 =
∞

∑
k=0

n2k22. (83)

Once the matrix N is known, (77) gives the values ofΨ and ofΨ′ for all the values

of x. From (77) one has:

Ψ(x) = n11(x)Ψ0+n12(x)Ψ′
0. (84)

Since Ψ0 and Ψ′
0 are arbitrary constants, Ψ(x) (84) is the general integral of (18).

In the whole interval of variation of x where f (x) is bounded, the matrix

product N (78) is finite. We can show this the same way we have done it for

the matrix M (p.23): one can find a dominant matrix Mα whose power is finite.

One then does not have to fear the turning points in the solution (84). Despite

this, the solution (84) is not always very convenient like (49), since it does not

immediately show the essential properties of the wave function. In effect, if the

potential function is given, for example, by a polynomial of x, the formulas (81)

and (82) show that the n2k11, . . . (82) can be expressed easily as polynomials of x
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so the mαβ (83) will be given by the infinite series following the powers of x ,

also absolutely convergent, since N is finite. We know, on the other side, that

the approximate solution (50), which we found from the exact solution, gives the

approximation of geometrical optics.

We supposed that the potential function has a pole of order p, which remains

finite around O. We will require for the wave function and its derivatives up to at

least pth order, to be null at the point O:

Ψ(0) = Ψ(1)
(0) = Ψ(2)

(0) = . . .= Ψ(l)
(0) = 0, Ψ(l+1)

(0) ̸= 0, l ≥ p.

This would not, obviously, mean that the functionΨ (84) becomes identically null,

becauseΨ(0) =Ψ′
(0) = 0, but to find the valuesΨ1=Ψ(∆x) andΨ′

1=Ψ′(∆x) from

(75), one has to start with this term in the Taylor development, which is not null

for x= 0 and which is proportional to Ψ(l+1):

Ψ1 = a0(∆x)l+1, Ψ′
1 = b0(∆x)l (85)

where a0,b0 are arbitrary constants. One has only to start to construct step by step

the values of Ψ(x) and of Ψ(x)′. The formula (84) remains valid when replacing

in it Ψ0 and Ψ′
0 with Ψ1 and Ψ′

1 (85). This function is finite in the whole finite

interval of variation of x, and null at the point O.

Let us now return to our potential barrier, which extends from x0 to x′, with

x0 < 0 < x′ and let the point O be a pole of order p for the potential. By two

verticals, passing trough the points O1 and O2 of the abscissa −δ and δ (δ is a

small positive number ) we will limit a barrier which contains the pole. Between

the points O1 andO2 the solution requires the wave equation (18) to be of the form

(84) and outside of the interval O1O2 – of the form (49). At the points O1 and O2

one has to write the two conditions of continuity, in order to connect the solutions

inside the interval O1O2 with those in its exterior. The final wave function will
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finds initially:
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and by replacing n2k−121 (x), . . . one obtains the formula:
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∫ xp

x0
dx(2k−1)

∫ x(2k−1)

x0
f (x(2k−2))dx(2k−2)

∫ x(2k−2)

x0
. . .

∫ x(1)

x0
f (x)dx (81)

where we have denoted with upper indexes the variables which replace formally

the variable x. One will have also the three equations which correspond to (46):
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(2k) ∫ x(2k)
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x0 dx

n2k+121 (xp) = (−1)k
∫ xp
x0 f dx(2k)

∫ x(2k)
x0 dx(2k−1)

∫ x(2k−1)
x0 . . .

∫ x(1)
x0 f dx

n2k22(xp) = (−1)k
∫ xp
x0 f dx(2k−1)

∫ x(2k−1)
x0 dx(2k−2)

∫ x(2k−2)
x0 . . .

∫ x(1)
x0 dx

(82)

and the four elements of N will be given like in (47) by:

n11 =
∞

∑
k=0

n2k11, n12 =
∞

∑
k=0

n2k+112 , n21 =
∞

∑
k=0

n2k+121 , n22 =
∞

∑
k=0

n2k22. (83)

Once the matrix N is known, (77) gives the values ofΨ and ofΨ′ for all the values

of x. From (77) one has:

Ψ(x) = n11(x)Ψ0+n12(x)Ψ′
0. (84)

Since Ψ0 and Ψ′
0 are arbitrary constants, Ψ(x) (84) is the general integral of (18).

In the whole interval of variation of x where f (x) is bounded, the matrix

product N (78) is finite. We can show this the same way we have done it for

the matrix M (p.23): one can find a dominant matrix Mα whose power is finite.

One then does not have to fear the turning points in the solution (84). Despite

this, the solution (84) is not always very convenient like (49), since it does not

immediately show the essential properties of the wave function. In effect, if the

potential function is given, for example, by a polynomial of x, the formulas (81)

and (82) show that the n2k11, . . . (82) can be expressed easily as polynomials of x
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so the mαβ (83) will be given by the infinite series following the powers of x ,

also absolutely convergent, since N is finite. We know, on the other side, that

the approximate solution (50), which we found from the exact solution, gives the

approximation of geometrical optics.

We supposed that the potential function has a pole of order p, which remains

finite around O. We will require for the wave function and its derivatives up to at

least pth order, to be null at the point O:

Ψ(0) = Ψ(1)
(0) = Ψ(2)

(0) = . . .= Ψ(l)
(0) = 0, Ψ(l+1)

(0) ̸= 0, l ≥ p.

This would not, obviously, mean that the functionΨ (84) becomes identically null,

becauseΨ(0) =Ψ′
(0) = 0, but to find the valuesΨ1=Ψ(∆x) andΨ′

1=Ψ′(∆x) from

(75), one has to start with this term in the Taylor development, which is not null

for x= 0 and which is proportional to Ψ(l+1):

Ψ1 = a0(∆x)l+1, Ψ′
1 = b0(∆x)l (85)

where a0,b0 are arbitrary constants. One has only to start to construct step by step

the values of Ψ(x) and of Ψ(x)′. The formula (84) remains valid when replacing

in it Ψ0 and Ψ′
0 with Ψ1 and Ψ′

1 (85). This function is finite in the whole finite

interval of variation of x, and null at the point O.

Let us now return to our potential barrier, which extends from x0 to x′, with

x0 < 0 < x′ and let the point O be a pole of order p for the potential. By two

verticals, passing trough the points O1 and O2 of the abscissa −δ and δ (δ is a

small positive number ) we will limit a barrier which contains the pole. Between

the points O1 andO2 the solution requires the wave equation (18) to be of the form

(84) and outside of the interval O1O2 – of the form (49). At the points O1 and O2

one has to write the two conditions of continuity, in order to connect the solutions

inside the interval O1O2 with those in its exterior. The final wave function will
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be then presented by different analytical expressions in the indicated parts of the

interval x0x′ but it will be finite everywhere.

For the approximate calculations concerning the problem of barriers one will

retain from the function (84) only the first terms in the development of nαβ (83).

Since the turning points P and Q are ordinary points for the function (84), we

can use this to avoid the points P and Q as singular points of the function (49). But

in neighborhood of the points P and Q the function (84) is essentially linear, since

f = 2m(E−U) ∼ 0, as we have seen from (75). It was exactly a linear function

that we used (p.33) around the points P and Q without previously constructing the

function (84).

In the problem of the solution of the wave equation for several particles, we

will have to make considerations of this type for the singular points, and we will

use the preceding results.

3.6 Application of the preceding method in the case of linear potential

We will apply the preceding method of solving the wave equation to the sim-

ple case, where the potential function is linear. We have seen (triangular barrier

p.6), that one had to study the wave equation:

d2Ψ
dξ2

+
8π2m
h2

(E−C−Fξ)Ψ = 0. (86)

By setting:

x=
(
8π2m
h2

F
) 1

3
(
−C−E

F
+ξ

)
(87)

the equation (86) becomes:
d2Ψ
dx2

+ xΨ = 0. (88)

The independent solutions of this equation are the functions
√
xJ 1

3

(
2
3x

3
2

)
and

√
xJ− 1

3

(
2
3x

3
2

)
, where J 1

3
and J− 1

3
are the Bessel functions of order 1

3 and − 1
3 .
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The Bessel function of order γ, where γ is not a positive integer, is:

Jλ(x) =
( x
2

)λ ∞

∑
n=0

(−1)n

n!

( x
2

)2n 1
Γ(n+λ+1)

This formula gives for λ =± 1
3 the functions:

J± 1
3
(x) =

( x
2

)± 1
3

∞

∑
n=0

(−1)n

n!

( x
2

)2n 1
Γ(n± 1

3 +1)
. (89)

As it is known, the function Γ satisfies the functional equation:

Γ(x+1) = xΓ(x)

By applying successively this formula for x= n,n−1, . . . one finds:



Γ(n+ 1
3 +1) = ( 13 +n)( 13 +n−1) . . . 43 .

1
3 .Γ(

1
3)

= 1
3n [1+3n][1+3(n−1)] . . .7.4.1.Γ(

1
3)

(90)




Γ(n− 1
3 +1) = (− 1

3 +n)(− 1
3 +n−1) . . . 83 .

5
3 .
2
3(

−1
3 ).Γ(−

1
3)

= 1
3n [−1+3n][−1+3(n−1)] . . .5.2.(−1).Γ(−

1
3)

(90′)

Let us now calculate
√
xJ 1

3

(
2
3x

3
2

)
using (89) and (90):





√
xJ 1

3

(
2
3x

3
2

)
=

√
x
( 1
2

) 1
3
( 2
3

) 1
3

(
x
3
2

) 1
3

[
1

Γ( 13+1)
− 1
22
( 2
3

)2
(
x
3
2
)2

Γ( 13+2)
+. . .+(−1)n

n!
1
22n

( 2
3

)2n
(
x
3
2 .2n

)

Γ(n+ 1
3+1)

+ . . .

]

=

(
3
2
3
)
x

Γ( 13)

(
1− x3

3.4 +
x6

2!32.7.4 −
x9

3!33.10.7.4.1 + . . .+ (−1)nx3n
n!3n.[1+3n][1+3(n−1)]...7.4.1 + . . .+ . . .

)

(91)

One will also have:
{
√
xJ− 1

3

(
2
3x

3
2

)
= −3

4
3

Γ(− 1
3)

(
1− x3

3.2 +
x6

2!32.5.2−. . .+ (−1)nx3n
n!3n[−1+3n][−1+3(n−1)]...8.5.2 + . . .

)

(92)

The general integral of (88) is a linear combination of (91) and (92).
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be then presented by different analytical expressions in the indicated parts of the

interval x0x′ but it will be finite everywhere.

For the approximate calculations concerning the problem of barriers one will

retain from the function (84) only the first terms in the development of nαβ (83).

Since the turning points P and Q are ordinary points for the function (84), we

can use this to avoid the points P and Q as singular points of the function (49). But

in neighborhood of the points P and Q the function (84) is essentially linear, since

f = 2m(E−U) ∼ 0, as we have seen from (75). It was exactly a linear function

that we used (p.33) around the points P and Q without previously constructing the

function (84).

In the problem of the solution of the wave equation for several particles, we

will have to make considerations of this type for the singular points, and we will

use the preceding results.

3.6 Application of the preceding method in the case of linear potential

We will apply the preceding method of solving the wave equation to the sim-

ple case, where the potential function is linear. We have seen (triangular barrier

p.6), that one had to study the wave equation:

d2Ψ
dξ2

+
8π2m
h2

(E−C−Fξ)Ψ = 0. (86)

By setting:

x=
(
8π2m
h2

F
) 1

3
(
−C−E

F
+ξ

)
(87)

the equation (86) becomes:
d2Ψ
dx2

+ xΨ = 0. (88)

The independent solutions of this equation are the functions
√
xJ 1

3

(
2
3x

3
2

)
and

√
xJ− 1

3

(
2
3x

3
2

)
, where J 1

3
and J− 1

3
are the Bessel functions of order 1

3 and − 1
3 .
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The Bessel function of order γ, where γ is not a positive integer, is:

Jλ(x) =
( x
2

)λ ∞

∑
n=0

(−1)n

n!

( x
2

)2n 1
Γ(n+λ+1)

This formula gives for λ =± 1
3 the functions:

J± 1
3
(x) =

( x
2

)± 1
3

∞

∑
n=0

(−1)n

n!

( x
2

)2n 1
Γ(n± 1

3 +1)
. (89)

As it is known, the function Γ satisfies the functional equation:

Γ(x+1) = xΓ(x)

By applying successively this formula for x= n,n−1, . . . one finds:



Γ(n+ 1
3 +1) = ( 13 +n)( 13 +n−1) . . . 43 .

1
3 .Γ(

1
3)

= 1
3n [1+3n][1+3(n−1)] . . .7.4.1.Γ(

1
3)

(90)




Γ(n− 1
3 +1) = (− 1

3 +n)(− 1
3 +n−1) . . . 83 .

5
3 .
2
3(

−1
3 ).Γ(−

1
3)

= 1
3n [−1+3n][−1+3(n−1)] . . .5.2.(−1).Γ(−

1
3)

(90′)

Let us now calculate
√
xJ 1

3

(
2
3x

3
2

)
using (89) and (90):





√
xJ 1

3

(
2
3x

3
2

)
=

√
x
( 1
2

) 1
3
( 2
3

) 1
3

(
x
3
2

) 1
3

[
1

Γ( 13+1)
− 1
22
( 2
3

)2
(
x
3
2
)2

Γ( 13+2)
+. . .+(−1)n

n!
1
22n

( 2
3

)2n
(
x
3
2 .2n

)

Γ(n+ 1
3+1)

+ . . .

]

=

(
3
2
3
)
x

Γ( 13)

(
1− x3

3.4 +
x6

2!32.7.4 −
x9

3!33.10.7.4.1 + . . .+ (−1)nx3n
n!3n.[1+3n][1+3(n−1)]...7.4.1 + . . .+ . . .

)

(91)

One will also have:
{
√
xJ− 1

3

(
2
3x

3
2

)
= −3

4
3

Γ(− 1
3)

(
1− x3

3.2 +
x6

2!32.5.2−. . .+ (−1)nx3n
n!3n[−1+3n][−1+3(n−1)]...8.5.2 + . . .

)

(92)

The general integral of (88) is a linear combination of (91) and (92).
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Let us now search for a solution of equation (88) with the second method

which we developed on (p.42). We have written the general integral Ψ(x) of the

wave equation in the form (84):

Ψ(x) = n11(x)Ψ0+n12(x)Ψ′
0 =

∞

∑
k=0

n2k11(x)Ψ0+
∞

∑
k=0

n2k+112 (x)Ψ′
0 (93)

where Ψ0 and Ψ′
0 are arbitrary constants and the terms n

2k
11(x), n

2k+1
12 (x) are given

by equations (81) and (82).

Using (81) and (82), one can express the n2k11(x), n
2k+1
12 (x) as multiple integrals

(with f (x) = x):

n2k11(x) = (−1)k
∫ x

0
dx

∫ x

0
xdx

∫ x

0
. . .

∫ x

0
dx

∫ x

0
xdx (94)

n2k+112 (x) = (−1)k
∫ x

0
dx

∫ x

0
xdx

∫ x

0
. . .

∫ x

0
xdx

∫ x

0
dx (94′)

The 2k successive integrations in (94) (respectively the 2k+ 1 ones in (94′)) can

be easily performed and one arrives at the formulas:

n2k11(x) =
(−1)kx3k

3k(3k−1)..9.8.6.5.3.2
=

(−1)kx3k

3kk!2.5.8.(3k−1)
(95)

n2k+112 (x) =
(−1)kx3k+1

(3k+1)3k..7.6.4.3.1
=

(−1)kx3k+1

3kk!1.4.7..(3k+1)
(95′)

and one sees that (95) and (95′) are respectively the k−th term in the series (91) and

(92). Thus we found, using the last method, the known solution of equation (88).

If the potential function is given by a polynomial or if it can be expanded

in Taylor series in a interval (x0x′), the integral of the wave equation can be rep-

resented by the power series of x. Obviously, we found that solution using the

preceding method. But this method is applicable also in the case where the inte-

gral of the wave equation cannot be expanded in power series of x. If the potential

function U(x) is discontinuous at finite number of points or if it is composed of
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arcs of different curves, remaining always bounded, the integrals (81) and (82)

keep their meaning and the preceding method is still applicable.

We can find also the solutions of the equation (88) with the method of bar-

riers (p. 27-28), but the calculations are much more complicated. The method

of barriers is more convenient for search of approximate solutions of the wave

equation.

Note 1 – When one studies the problem of quantification of the hydrogen

atom in polar coordinates [6], the wave equation can be solved by separation of

variables. The equation depends only on the vector ray r in the following form:

d2R
dr2

+
2
r
dR
dr

+

(
A+

2B
r

+
C
r2

)
R= 0 (96)

where R is a function of r and A,B,C are constants. When the energy E < 0, the

solution of (96) can be presented in the form R= e−ρ/2v(ρ), where ρ= 2r
r0
and v(ρ)

is a polynomial of ρ. The eigenvalues of the energy form a discrete spectrum. For

E > 0 one finds continuous spectrum.

We can search for solution of this equation by the method of decomposition

of the potential barrier.

Let us divide to n parts (r0r′) – the interval of variation of r and let us set for

the interval (rk,rk+1):

ak =
2
rk
, bk = A+

2B
rk

+
C
r2k
, (k = 1,2, . . . ,n).

One can make a corresponding elementary barrier to each elementary interval.

In the domain (rk,rk+1) one can consider the coefficients of the equation (96) as

constants ak,bk. In the same domain, the total integral of (96) will be:

Rk(r) = Lke−λk1 r+Mke+λk2 r (97)

where Lk,Mk are constants whose values change from one elementary barrier to

the next, and λk1 and λk2 are the roots of the characteristic equation σ2+akσ+bk =
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0 =
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∞

∑
k=0
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0 (93)

where Ψ0 and Ψ′
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11(x), n

2k+1
12 (x) are given

by equations (81) and (82).

Using (81) and (82), one can express the n2k11(x), n
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0
. . .
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0
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0
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0
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0
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∫ x

0
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The 2k successive integrations in (94) (respectively the 2k+ 1 ones in (94′)) can
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=
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3kk!1.4.7..(3k+1)
(95′)

and one sees that (95) and (95′) are respectively the k−th term in the series (91) and

(92). Thus we found, using the last method, the known solution of equation (88).

If the potential function is given by a polynomial or if it can be expanded

in Taylor series in a interval (x0x′), the integral of the wave equation can be rep-

resented by the power series of x. Obviously, we found that solution using the

preceding method. But this method is applicable also in the case where the inte-

gral of the wave equation cannot be expanded in power series of x. If the potential

function U(x) is discontinuous at finite number of points or if it is composed of
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arcs of different curves, remaining always bounded, the integrals (81) and (82)

keep their meaning and the preceding method is still applicable.

We can find also the solutions of the equation (88) with the method of bar-

riers (p. 27-28), but the calculations are much more complicated. The method

of barriers is more convenient for search of approximate solutions of the wave

equation.

Note 1 – When one studies the problem of quantification of the hydrogen

atom in polar coordinates [6], the wave equation can be solved by separation of

variables. The equation depends only on the vector ray r in the following form:

d2R
dr2

+
2
r
dR
dr

+

(
A+

2B
r

+
C
r2

)
R= 0 (96)

where R is a function of r and A,B,C are constants. When the energy E < 0, the

solution of (96) can be presented in the form R= e−ρ/2v(ρ), where ρ= 2r
r0
and v(ρ)

is a polynomial of ρ. The eigenvalues of the energy form a discrete spectrum. For

E > 0 one finds continuous spectrum.

We can search for solution of this equation by the method of decomposition

of the potential barrier.

Let us divide to n parts (r0r′) – the interval of variation of r and let us set for

the interval (rk,rk+1):

ak =
2
rk
, bk = A+

2B
rk

+
C
r2k
, (k = 1,2, . . . ,n).

One can make a corresponding elementary barrier to each elementary interval.

In the domain (rk,rk+1) one can consider the coefficients of the equation (96) as

constants ak,bk. In the same domain, the total integral of (96) will be:

Rk(r) = Lke−λk1 r+Mke+λk2 r (97)

where Lk,Mk are constants whose values change from one elementary barrier to

the next, and λk1 and λk2 are the roots of the characteristic equation σ2+akσ+bk =
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0. λ can be real or complex, the method of solving is equally applicable. The form

of the solution (97) is the same as (19) and one will have the continuity conditions

as in (21). Then one will make the eliminations of Lk,Mk with the help of matrices

like (28) and one will arrive at the solution R(r) similar to (49). The discussion of

the convergence is the same like for equation (18).

We can also apply to this equation the method of solution given on page 45.

We denote R(r0) = R0 and
( dR
dr

)
r0
= R′

0, R0 and R′
0 are arbitrary constants. The

values R1 and R′
1 of R and

dR
dr at the point r0+∆r0 will be calculated with the

formulas:


R1 = R0+∆r0R′

0

R′
1 = R′

0+∆r0R′′
0 =−∆r0

(
A+ 2B

r0
+ C

r20

)
R0+

(
1− 2

r0
∆r0

)
R′
0.

(97′)

The right side of the last equation can be expressed in y by replacing R′′ with its

value from (96).

By analogous to (97′) formulas one finds the values R2,R′
2 etc ... Rp,R′

p. As

for equation (76), one will express Rp,R′
p as functions of R0, R

′
0 with the help of

a matrix in the form of N (78). One will give to the solution R(r) of (96) a form

similar to (84). The discussions of this solution are similar to those of the solution

(84). The turning points of the Classical Mechanics are ordinary points for this

solution. One can also choose the initial values R0 and R′
0 in a way that R(r) will

be finite at the point r = 0.

Note 2 – After the preceding considerations, it is clear that the two methods

of solving the wave equation developed until now, can be generalized without

difficulty for solving linear differential equations of order n whose coefficients

are known functions of x. One has to use almost diagonal matrices with n rows

and n columns on the place of the matrices with 2 rows and 2 columns. All the

considerations we have done in the case n= 2 apply to the case of any n.
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CHAPTER 4

4.1 Generalization of the method of barriers for the solution of the wave
equation in the general case [4]

We have found the solution of the wave equation in the case of a single parti-

cle moving on a straight line in any field. The essential idea of the method was the

decomposition of the given barrier to successive elementary barriers. The same

method of barriers will permit us to search for solution of the wave equation in the

general case.

We will start with the study of the wave equation for two particles (x) and

(y), of masses m1 and m2, which move along the straight line OX , between the

two point of the abscissa x0 and x′. Let x and y be the corresponding coordinates.

The potential energy, F(x,y), of the system is composed of the mutual energy of

the particles, of the form F12(x− y), function of their relative distance and of the

energy originating from the exterior field, of the form F1(x)+F2(y). Therefore:

F(x,y) = F1(x)+F2(y)+F12(x− y) (98)

and the wave equation will be:

1
m1

∂2Ψ
∂x2

+
1
m2

∂2Ψ
∂y2

+
8π2

h2
[E−F(x,y)]Ψ = 0. (99)

When the term F12(x− y) = 0, i.e. when the particles are without interaction,

the function Ψ(x,y) decomposes to a product of the function Ψ1(x) and Ψ2(y),

Ψ(x,y) = Ψ1(x)Ψ2(y). The same decomposition happens also when the exterior

field is constant or null.

The equation (99) is an equation of partial derivatives of the elliptic type. Let

us take in the configuration space of the variables x and y a closed contourC, which
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0. λ can be real or complex, the method of solving is equally applicable. The form

of the solution (97) is the same as (19) and one will have the continuity conditions

as in (21). Then one will make the eliminations of Lk,Mk with the help of matrices

like (28) and one will arrive at the solution R(r) similar to (49). The discussion of

the convergence is the same like for equation (18).

We can also apply to this equation the method of solution given on page 45.

We denote R(r0) = R0 and
( dR
dr

)
r0
= R′

0, R0 and R′
0 are arbitrary constants. The

values R1 and R′
1 of R and

dR
dr at the point r0+∆r0 will be calculated with the

formulas:


R1 = R0+∆r0R′

0

R′
1 = R′

0+∆r0R′′
0 =−∆r0

(
A+ 2B

r0
+ C

r20

)
R0+

(
1− 2

r0
∆r0

)
R′
0.

(97′)

The right side of the last equation can be expressed in y by replacing R′′ with its

value from (96).

By analogous to (97′) formulas one finds the values R2,R′
2 etc ... Rp,R′

p. As

for equation (76), one will express Rp,R′
p as functions of R0, R

′
0 with the help of

a matrix in the form of N (78). One will give to the solution R(r) of (96) a form

similar to (84). The discussions of this solution are similar to those of the solution

(84). The turning points of the Classical Mechanics are ordinary points for this

solution. One can also choose the initial values R0 and R′
0 in a way that R(r) will

be finite at the point r = 0.

Note 2 – After the preceding considerations, it is clear that the two methods

of solving the wave equation developed until now, can be generalized without

difficulty for solving linear differential equations of order n whose coefficients

are known functions of x. One has to use almost diagonal matrices with n rows

and n columns on the place of the matrices with 2 rows and 2 columns. All the

considerations we have done in the case n= 2 apply to the case of any n.
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CHAPTER 4

4.1 Generalization of the method of barriers for the solution of the wave
equation in the general case [4]

We have found the solution of the wave equation in the case of a single parti-

cle moving on a straight line in any field. The essential idea of the method was the

decomposition of the given barrier to successive elementary barriers. The same

method of barriers will permit us to search for solution of the wave equation in the

general case.

We will start with the study of the wave equation for two particles (x) and

(y), of masses m1 and m2, which move along the straight line OX , between the

two point of the abscissa x0 and x′. Let x and y be the corresponding coordinates.

The potential energy, F(x,y), of the system is composed of the mutual energy of

the particles, of the form F12(x− y), function of their relative distance and of the

energy originating from the exterior field, of the form F1(x)+F2(y). Therefore:

F(x,y) = F1(x)+F2(y)+F12(x− y) (98)

and the wave equation will be:

1
m1

∂2Ψ
∂x2

+
1
m2

∂2Ψ
∂y2

+
8π2

h2
[E−F(x,y)]Ψ = 0. (99)

When the term F12(x− y) = 0, i.e. when the particles are without interaction,

the function Ψ(x,y) decomposes to a product of the function Ψ1(x) and Ψ2(y),

Ψ(x,y) = Ψ1(x)Ψ2(y). The same decomposition happens also when the exterior

field is constant or null.

The equation (99) is an equation of partial derivatives of the elliptic type. Let

us take in the configuration space of the variables x and y a closed contourC, which
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limits a region P. The integral Ψ(x,y) of (99) is determined in the domain P in a

unique way, if we know the values of Ψ on the contourC (a Dirichlet problem).

The integral Ψ of (99) is determined in another way in the problem of col-

lision of two particles [1]. If the potential F tends to zero when the particles are

very far from each other and from the origin O (for example x and y are very large

and negative),Ψ should reduce to a linear combination of the two monochromatic

plane waves, whose amplitudes tend to zero. It is this last condition which we will

impose on the function Ψ, when the considered problem is that of collision.

Let us divide the interval x0x′ to n parts with the points of division of the ab-

scissa x1,x2, . . . ,xn−1,xn = x′. We suppose that at given moment (x) and (y) are in

the intervals (xk,xk+1) and (yl,yl+1) respectively. We also suppose that the value

of the potential is constant, equal to F(xk,yl) all the times when (x) is in the in-

terval (xk,xk+1) and (y) – in the interval (yl,yl+1). Then we will reason as if the

particles are without interaction and in a constant exterior field for very small dis-

placements. But in such case the wave function Ψ(x,y) decomposes to a product

of a function Ψ1(x) of x and another Ψ2(y) of y. We replace in (99) Ψ(x,y) =

Ψ1(x)Ψ2(y) and we divide the equation toΨ1(x)Ψ2(y). Since the potential energy

is supposed to be constant equal to F(xk,yl) = F1(xk)+F2(yl)+F12(xk− yl), the

first member of the equation separates into two expressions: the first, a function

of x and the second, a function of y. It follows that each of them will be equal to

a constant λk,l . To simplify the calculations, we assume in the following that λk,l

has a constant value λ for all the choices of the indexes k, l. We will see that the

so found solution is an integral of (99) but it is not the general integral of (99).

Then the equation (99) decomposes to two ordinary equations:



d2Ψ1
dx2 + 8π2m1

h2 [E−F1(xk)−F12(xk− yl)−λ]Ψ1 = 0

d2Ψ2
dy2 + 8π2m2

h2 [λ−F2(y)]Ψ2 = 0
(100)
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We attached the mixed term F12(xk− yl) to the first equation of (100). From

(100) we will find an integral of (99), which fulfills the initial conditions, required

by the problem of collision of two particles. If we attached the term F12(xk−yl) to

the second equation of (100), we would have found, making the same calculations

which follow, an integral of (99) which fulfills the same initial conditions in the

problem of collision.

The general integral of each of the ordinary equations (100) is a linear com-

bination of two monochromatic plane waves with amplitudes Ak,l,Bk,l for the first

and Ck,l,Dk,l for the second. Let us introduce the notations:




α2k,l =
8π2m1
h2 [E−F1(xk)−F12(xk− yl)−λ],

β2k,l =
8π2m2
h2 [λ−F2(yl)]Ψ2 = 0

(101)

Although β does not depend on x, we wrote βk,l instead of βl because if one

consider λ as a function of x and y, β will depend on x.

With Ψk,l we indicate the wave function which satisfies the equation (99) for

the displacements of (x) and (y) in the interval (xk,xk+1) and (yl,yl+1). We can

then write:




Ψk,l(x,y) = (Ak,le−iαk,l x+Bk,leiαk,l x)(Ck,le−iβk,l y+Dk,leiβk,l y)

(k, l = 1,2, . . . ,n)
(102)

For the different values of the indexes k and l we will have different solutions,

each valid when x and y vary in the respective defined interval. Since there are two

independent indexes, there will be n2 solutions of the form (102). The amplitudes

Ak,l,Bk,l,Ck,l,Dk,l are functions of x and y, which we consider as constants in the

intervals mentioned above.

Let us consider the solutions Ψk+1,l(x,y). The configuration of the system of

two particles is the same as the configuration corresponding to the solution Ψk,l ,
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a constant λk,l . To simplify the calculations, we assume in the following that λk,l

has a constant value λ for all the choices of the indexes k, l. We will see that the

so found solution is an integral of (99) but it is not the general integral of (99).

Then the equation (99) decomposes to two ordinary equations:
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h2 [E−F1(xk)−F12(xk− yl)−λ]Ψ1 = 0
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h2 [λ−F2(y)]Ψ2 = 0
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We attached the mixed term F12(xk− yl) to the first equation of (100). From

(100) we will find an integral of (99), which fulfills the initial conditions, required

by the problem of collision of two particles. If we attached the term F12(xk−yl) to

the second equation of (100), we would have found, making the same calculations

which follow, an integral of (99) which fulfills the same initial conditions in the

problem of collision.

The general integral of each of the ordinary equations (100) is a linear com-

bination of two monochromatic plane waves with amplitudes Ak,l,Bk,l for the first

and Ck,l,Dk,l for the second. Let us introduce the notations:
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8π2m1
h2 [E−F1(xk)−F12(xk− yl)−λ],
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Although β does not depend on x, we wrote βk,l instead of βl because if one

consider λ as a function of x and y, β will depend on x.

With Ψk,l we indicate the wave function which satisfies the equation (99) for

the displacements of (x) and (y) in the interval (xk,xk+1) and (yl,yl+1). We can

then write:
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Ψk,l(x,y) = (Ak,le−iαk,l x+Bk,leiαk,l x)(Ck,le−iβk,l y+Dk,leiβk,l y)

(k, l = 1,2, . . . ,n)
(102)

For the different values of the indexes k and l we will have different solutions,

each valid when x and y vary in the respective defined interval. Since there are two

independent indexes, there will be n2 solutions of the form (102). The amplitudes

Ak,l,Bk,l,Ck,l,Dk,l are functions of x and y, which we consider as constants in the

intervals mentioned above.

Let us consider the solutions Ψk+1,l(x,y). The configuration of the system of

two particles is the same as the configuration corresponding to the solution Ψk,l ,

69



70

except for the position of (x), which is in the interval xk+1,xk+2 while (y) has

not changed its interval. The particle (x) moves from the interval xk,xk+1 where

the potential has constant value, at the interval xk+1,xk+2 where it has different

constant value. The calculations go on as if we had a passage of particles trough

potential barrier. When the particle (x)moves, it has to cross a sequence of barriers

each with constant height. This height depends, naturally, of the position of (x)

and (y). Exactly for the same reason, we can think that (y) crosses a sequence

of elementary rectangular barriers with constant height, function of the position

of (x) and (y). It is clear that the reasoning made for a sequence of rectangular

barriers (p.4) can be applied here too. When the particle (x) switches the barrier,

on the edge of two neighboring barriers, the wave functionΨk,l(x,y) and its partial

derivative with respect to x should be continuous, considering y as a constant.

Therefore, one can write the two following conditions:



Ψk,l(xk+1,yl) = Ψk+1,l(xk+1,yl)
(

∂Ψk,l

∂x

)
xk+1,yl

=
(

∂Ψk+1,l
∂x

)
xk+1,yl

(103)

For the same reasons, Ψk,l and
∂Ψk,l

∂y should be continuous with respect to y. One

will have two conditions like (103) expressing the continuity with respect to y.

We will give the following explicit form of the conditions (103), taking into

account (102):




(Ak,le−iαk,l xk+1 +Bk,leiαk,l xk+1)(Ck,le−iβk,l yl +Dk,leiβk,l yl )

= (Ak+1,le−iαk+1,l xk+1 +Bk+1,leiαk+1,l xk+1)(Ck+1,le−iβk+1,l yl +Dk+1,leiβk+1,l yl )

iαk,l(−Ak,le−iαk,l xk+1 +Bk,leiαk,l xk+1)(Ck,le−iβk,l yl +Dk,leiβk,l yl )

= iαk+1,l(−Ak+1,le−iαk+1,l xk+1 +Bk+1,leiαk+1,l xk+1)(Ck+1,le−iβk+1,l yl +Dk+1,leiβk+1,l yl )

(104)

The two conditions (104) are linear with respect to the amplitudes Ak,l,Bk,l,Ak+1,l,Bk+1,l .

They allow us to express Ak+1,l and Bk+1,l as functions of Ak,l and Bk,l . We divide
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the two equalities (104) by the last factor of their right sides and we introduce the

notation:

ck,k+m,l =
Ck,le−iβk,l yl +Dk,leiβk,l yl

Ck+m,le−iβk+m,l yl +Dk+m,leiβk+m,l yl
(105)

The equations (104) will take the form:



ck,k+1,l(Ak,le−iαk,l xk+1 +Dk,leiαk,l xk+1) = Ak+1,le−iαk+1,l xk+1 +Bk+1,leiαk+1,l xk+1

ck,k+1,lαk,l(Ak,le−iαk,l xk+1 −Dk,leiαk,l xk+1) = αk+1,l(Ak+1,le−iαk+1,l xk+1 −Bk+1,leiαk+1,l xk+1)

(106)

In this form, the difference between the equations (106) and (21) is only in the

factors ck,k+1,l . Consequently the relations between Ak+1,l,Bk+1,l and Ak,l,Bk,l like

(26) will have the form:
����
Ak+1,l
Bk+1,l

����= ck,k+1,lMk,l

����
Ak,l
Bk,l

���� (107)

whereMk,l is a matrix with two rows and two columns, corresponding to the matrix

Mj (33), thus, we can easily write:

Mk,l =

������
e
i∆α∆k,l xk−

∆α∆k,l
2αk,l ∆α∆k,l

2αk,l
e2iαk,l xk

∆α∆k,l
2αk,l

e−2iαk,l xk e
−i∆α∆k,l xk−

∆α∆k,l
2αk,l

������

∆α∆k,l = αk+1,l −αk,l =

(
∂αk,l

∂x

)

xk

∆xk

(108)

The index ∆k indicates that the variation of α is caused only by the variation of x,
while y remains a constant. The vector relation (107) is true for k= 1,2, . . . ,n. By

applying it for the successive values of k, one will find, like in the problem in one

dimension:
����
Ak+ρ,l
Bk+ρ,l

����= ck+ρ−1,k+ρ,lck+ρ−2,k+ρ−1,l . . .ck,k+1,lMk+ρ,lMk+ρ−1,l . . .Mk,l

����
Ak,l
Bk,l

���� (109)

The product of the factors c in the right part of the last equality is calculated taking

into account (105). This factor product simplifies easily and one finds:

ck+ρ−1,k+ρ,lck+ρ−2,k+ρ−1,l . . .ck,k+1,l = ck,k+ρ,l. (110)
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except for the position of (x), which is in the interval xk+1,xk+2 while (y) has
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factors ck,k+1,l . Consequently the relations between Ak+1,l,Bk+1,l and Ak,l,Bk,l like

(26) will have the form:
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whereMk,l is a matrix with two rows and two columns, corresponding to the matrix

Mj (33), thus, we can easily write:
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2αk,l ∆α∆k,l

2αk,l
e2iαk,l xk

∆α∆k,l
2αk,l

e−2iαk,l xk e
−i∆α∆k,l xk−

∆α∆k,l
2αk,l
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(
∂αk,l

∂x

)
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The index ∆k indicates that the variation of α is caused only by the variation of x,
while y remains a constant. The vector relation (107) is true for k= 1,2, . . . ,n. By

applying it for the successive values of k, one will find, like in the problem in one

dimension:
����
Ak+ρ,l
Bk+ρ,l

����= ck+ρ−1,k+ρ,lck+ρ−2,k+ρ−1,l . . .ck,k+1,lMk+ρ,lMk+ρ−1,l . . .Mk,l

����
Ak,l
Bk,l

���� (109)

The product of the factors c in the right part of the last equality is calculated taking

into account (105). This factor product simplifies easily and one finds:

ck+ρ−1,k+ρ,lck+ρ−2,k+ρ−1,l . . .ck,k+1,l = ck,k+ρ,l. (110)
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From another side, like we have already done it, the product of the matricesMk+ j,l

in (109) gives a matrix which is calculated, obviously, likeMk (29′). In this matrix

product, which we denote by Mk+ρ,k,l , the sums in its elements will be extended

from xk to xk+1, y remaining a constant. One will finally have:
����
Ak+ρ,l
Bk+ρ,l

����= ck,k+ρ,lMk+ρ,k,l

����
Ak,l
Bk,l

���� (111)

We can give the conditions of continuity with respect to y in an explicit form like

(104). These conditions will give the two linear relations between Ck,l+1,Dk,l+1

and Ck,l,Dk,l which one can write in the following vector form (like (107)):
����
Ck,l+1
Dk,l+1

����= αk,l+1,lNk,l

����
Ck,l
Dk,l

���� (112)

where the factor αk,l+1,l is composed in an analogous to (105) way:

αk,l+σ,l =
Ak,le−iαk,l xk +Bk,leiαk,l xk

Ak,l+σe−iαk,l+σxk +Bk,l+σeiαk,l+σxk
(113)

and Nk,l is a matrix with two rows and two columns, likeMk,l:

Nk,l =

�������
e
i∆βk,∆l yl−

∆βk,∆l
2βk,l ∆βk,∆l

2βk,l
e2iβk,l yl

∆βk,∆l
2βk,l

e2iβk,l yl e
−i∆βk,∆l yl−

∆βk,∆l
2βk,l

�������

∆βk,∆l = βk,l+1−βk,l =

(
∂βk,l

∂y

)

yl

∆yl.

(114)

The elimination of the successive amplitudes C,D from Ck,l,Dk,l to Ck,l+σ,Dk,l+σ

gives the relation: ����
Ck,l+σ
Dk,l+σ

����= αk,l+σ,lNk,l+σ,l

����
Ck,l
Dk,l

���� (115)

where Nk,l+σ,l is the matrix product of Nk,l and αk,l+σ,l is the factor which remains

from the product of α in (112).

When n → ∞, the sums in the terms of Mk+ρ,k,l and of Nk,l+σ,l transform to

definite integral: in the terms of Mk+ρ,k,l the integrations are done with respect to
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x, in those of Nk,l+σ,l – with respect to y. The question of convergence of the sums

is the same as in the case of one dimension, for the matrixM (29′). If the function

F(x,y) is continuous with respect to x and y and bounded in the interval x0x′,

one can find a matrix Mα which is dominant to Mk,l and whose arbitrary power is

finite and a matrix Nβ, dominant to Nk,l with similar properties. Then the matrices

Mk+ρ,k,l and Nk,l+σ,l are finite in the interval x0x′.

Let us consider the integrals in the terms of the matrices Mk+ρ,k,l and Nk,l+σ,l

as functions of their upper bounds. The elements mαβ and nαβ (α,β = 1,2) of M

and of N will be known functions of x and y, since they are calculated exactly like

the elements mαβ (47) of the matrix M (29′). Then, the wave function Ψ(x,y),

when x varies in the interval (xk+ρ,xk+ρ+1) and y – in the interval (yl+σ,yl+σ+1),

will be :



Ψk+ρ,l+σ(x,y) = (Ak+ρ,l+σe−iαk+ρ,l+σx+Bk+ρ,l+σeiαk+ρ,l+σx)

×(Ck+ρ,l+σe−iβk+ρ,l+σy+Dk+ρ,l+σeiβk+ρ,l+σy).

(116)

In the formula (102) and the following, we indicated with the indexes k and l

the arbitrary initial positions of the particles (x) and (y). In order to simplify the

writing and without constraining the generality, we can fix the initial positions of

(x) and (y) with the indexes 0,0. All the formulas from (100) to (116) will be

preserved, by substituting everywhere k = l = 0. In the following we will use

those formulas, modified in such way. Particularly, equation (116) will become:

Ψρ,σ(x,y) = (Aρ,σe−iαρ,σx+Bρ,σeiαρ,σx)(Cρ,σe−iβρ,σy+Dρ,σeiβρ,σy) (116′)

We can now express the amplitudes Aρ,σ,Bρ,σ from (116′) as functions of A0,σ,B0,σ
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����
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����
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Bk,l
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∆βk,∆l
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yl
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and of N will be known functions of x and y, since they are calculated exactly like
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the arbitrary initial positions of the particles (x) and (y). In order to simplify the

writing and without constraining the generality, we can fix the initial positions of

(x) and (y) with the indexes 0,0. All the formulas from (100) to (116) will be

preserved, by substituting everywhere k = l = 0. In the following we will use
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with the help of (111):




Ψρ,σ(x,y) = [(m11A0,σ +m12B0,σ)e−iαρ,σx+(m21A0,σ +m22B0,σ)eiαρ,σx]

×C0,σe
−iβ0,σyσ+D0,σe

iβ0,σyσ

Cρ,σe−iβρ,σyσ+Dρ,σeiβρ,σyσ (Cρ,σe−iβρ,σy+Dρ,σeiβρ,σy).

(117)

The last factor in the second term of (117) simplifies with the denominator of

the fraction, since y becomes equal to yσ when the intervals tend to zero. The

elements m11, . . . ,m22 of the matrix Mρ,0,0 are functions of xρ, because y remains

of the constant value yσ.

Let us now make the elimination of the amplitudesC and D in (117) with the

help of (115). One finds:




Ψρ,σ(x,y) = [(m11A0,σ +m12B0,σ)e−iαρ,σx+(m21A0,σ +m22B0,σ)eiαρ,σx]

×[(n11C0,0+n12D0,0)e−iβ0,σyσ +(n21C0,0+n22D0,0)eiβ0,σyσ ]
A0,0e

−iα0,0x0+B0,0e
iα0,0x0

A0,σe
−iα0,σx0+B0,σe

iα0,σx0

(118)

where n11, . . . ,n22 are known functions of y (x in n11, . . . ,n22 remains the constant

x0).

If we eliminate the Cρ,σ,Dρ,σ of (116) with the help of (115) and (113) and

the Aρ,0,Bρ,0 with the help of (111) and (105), one will find those two forms of

(116′):




Ψρ,σ(x,y) = [(m11A0,0+m12B0,0)e−iαρ,0x0 +(m21A0,0+m22B0,0)eiαρ,0x0 ]

×[(n11Cρ,0+n12Dρ,0)e−iβρ,σy+(n21Cρ,0+n22Dρ,0)eiβρ,σy]
C0,0e

−iβ0,0y0+D0,0e
iβ0,0y0

Cρ,0e
−iβρ,0y0+Dρ,0e

iβρ,0y0

(119)

In the terms m11, . . . ,m22, the integrals are performed with respect to x (y = y0)

and in the n11, . . . ,n22, with respect to y (x= xρ).

We have to make a note on the singular points of the potential function

F(x,y), and on the points where the quantity α and β (101) cancel each other.

Those last points correspond to the turning points in the Classical Mechanics for

the problem of one particle. In the region P, which surrounds those points, the

function Ψ(x,y) is essentially linear with respect to x and y and one can make
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analogous considerations to those on page 42. On the edge of P one has to agree

the values of the linear function with those of the wave function on the exterior of

P.

The singular points of the potential function F(x,y) are also singular points

for the functions Ψ(x,y) (117) and (118). One can use here also a method with

the help of which one can construct a solutionΨ(x,y) which is null at the singular

points of F(x,y) as we did that already in the problem of one particle (p. 40): one

can take as arbitrary parameters the values of the wave function Ψ and ∂Ψ
∂x ,

∂Ψ
∂y at

any point and little by little one can find the values of those quantities in other

points. We will not go into detail on this question, since the calculations are quite

long.

4.2 Verification that the function Ψk,l(x,y) satisfies the wave equation

In order to construct the function Ψk,l we decomposed the interval x0x′ (the

domain of the variables x and y) to small elementary domains (xk,xk+1) and (yl,yl+1)(k, l=

1,2, . . .n). Ψk,l is the solution of the equation in the domain above. One can con-

sider that the function Ψk,l represents a portion of certain surface Ψ(x,y). Ψ(x,y)

is composed of small surfacesΨk,l glued on their edges so that they form a contin-

uous surface. This is true for any choice of the intervals, also in the limit, when the

intervals tend to zero. Without verifying it, we are sure that Ψ(x,y) is solution of

the wave equation, since it is constructed in a way so that it satisfies it. However,

we will verify that in our calculations. Here, also the direct differentiation of the

final formula (118) is difficult, and we will make the verification like for the linear

problem, namely: we will calculate the values of Ψ for three neighboring values

of x (xk,xk+1 = xk+∆xk,xk+2 = xk+2∆xk), while y is fixed and equal to yl . With

those values we will form the derivative
(

∂2Ψ
∂x2

)
xk,yl
, following formula (51). In the
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with the help of (111):




Ψρ,σ(x,y) = [(m11A0,σ +m12B0,σ)e−iαρ,σx+(m21A0,σ +m22B0,σ)eiαρ,σx]

×C0,σe
−iβ0,σyσ+D0,σe

iβ0,σyσ

Cρ,σe−iβρ,σyσ+Dρ,σeiβρ,σyσ (Cρ,σe−iβρ,σy+Dρ,σeiβρ,σy).

(117)

The last factor in the second term of (117) simplifies with the denominator of

the fraction, since y becomes equal to yσ when the intervals tend to zero. The

elements m11, . . . ,m22 of the matrix Mρ,0,0 are functions of xρ, because y remains

of the constant value yσ.

Let us now make the elimination of the amplitudesC and D in (117) with the

help of (115). One finds:




Ψρ,σ(x,y) = [(m11A0,σ +m12B0,σ)e−iαρ,σx+(m21A0,σ +m22B0,σ)eiαρ,σx]

×[(n11C0,0+n12D0,0)e−iβ0,σyσ +(n21C0,0+n22D0,0)eiβ0,σyσ ]
A0,0e

−iα0,0x0+B0,0e
iα0,0x0

A0,σe
−iα0,σx0+B0,σe

iα0,σx0

(118)

where n11, . . . ,n22 are known functions of y (x in n11, . . . ,n22 remains the constant

x0).

If we eliminate the Cρ,σ,Dρ,σ of (116) with the help of (115) and (113) and

the Aρ,0,Bρ,0 with the help of (111) and (105), one will find those two forms of

(116′):




Ψρ,σ(x,y) = [(m11A0,0+m12B0,0)e−iαρ,0x0 +(m21A0,0+m22B0,0)eiαρ,0x0 ]

×[(n11Cρ,0+n12Dρ,0)e−iβρ,σy+(n21Cρ,0+n22Dρ,0)eiβρ,σy]
C0,0e
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iβ0,0y0

Cρ,0e
−iβρ,0y0+Dρ,0e

iβρ,0y0

(119)

In the terms m11, . . . ,m22, the integrals are performed with respect to x (y = y0)

and in the n11, . . . ,n22, with respect to y (x= xρ).

We have to make a note on the singular points of the potential function

F(x,y), and on the points where the quantity α and β (101) cancel each other.

Those last points correspond to the turning points in the Classical Mechanics for

the problem of one particle. In the region P, which surrounds those points, the

function Ψ(x,y) is essentially linear with respect to x and y and one can make
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analogous considerations to those on page 42. On the edge of P one has to agree

the values of the linear function with those of the wave function on the exterior of

P.

The singular points of the potential function F(x,y) are also singular points

for the functions Ψ(x,y) (117) and (118). One can use here also a method with

the help of which one can construct a solutionΨ(x,y) which is null at the singular

points of F(x,y) as we did that already in the problem of one particle (p. 40): one

can take as arbitrary parameters the values of the wave function Ψ and ∂Ψ
∂x ,

∂Ψ
∂y at

any point and little by little one can find the values of those quantities in other

points. We will not go into detail on this question, since the calculations are quite

long.

4.2 Verification that the function Ψk,l(x,y) satisfies the wave equation

In order to construct the function Ψk,l we decomposed the interval x0x′ (the

domain of the variables x and y) to small elementary domains (xk,xk+1) and (yl,yl+1)(k, l=

1,2, . . .n). Ψk,l is the solution of the equation in the domain above. One can con-

sider that the function Ψk,l represents a portion of certain surface Ψ(x,y). Ψ(x,y)

is composed of small surfacesΨk,l glued on their edges so that they form a contin-

uous surface. This is true for any choice of the intervals, also in the limit, when the

intervals tend to zero. Without verifying it, we are sure that Ψ(x,y) is solution of

the wave equation, since it is constructed in a way so that it satisfies it. However,

we will verify that in our calculations. Here, also the direct differentiation of the

final formula (118) is difficult, and we will make the verification like for the linear

problem, namely: we will calculate the values of Ψ for three neighboring values

of x (xk,xk+1 = xk+∆xk,xk+2 = xk+2∆xk), while y is fixed and equal to yl . With

those values we will form the derivative
(

∂2Ψ
∂x2

)
xk,yl
, following formula (51). In the
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same way, we will find
(

∂2Ψ
∂y2

)
xk,yl

and the verification will be immediate.

Equation (116) gives:



Ψk,l(xk,yl) = (Ak,le−iαk,l xk +Bk,leiαk,l xk )(Ck,le−iβk,l yl +Dk,leiβk,l yl )

Ψk,l(xk+1,yl) = (Ak,le−iαk,l(xk+∆xk) +Bk,leiαk,l(xk+∆xk))(Ck,le−iβk,l yl +Dk,leiβk,l yl )

(120)

Following (52) and by keeping the infinitesimals of second order one has:



Ψk,l(xk+1,yl) = [Ak,le−iαk,l xk(1− iαk,l∆xk− 1
2α2k,l∆x2k)+Bk,leiαk,l xk

×(1+ iαk,l∆xk− 1
2α2k,l∆x2k)][Ck,le−iβk,l yl +Dk,leiβk,l yl )].

(121)

From (116) we obtain:

Ψk,l(xk+2,yl) = Ψk+1,l(xk+2,yl)

= (Ak+1,le
−iαk+1,l xk+2 +Bk+1,le

iαk+1,l xk+2)(Ck+1,le
−iβk+1,l yl +Dk+1,le

iβk+1,l yl ).

Let us now replace Ak+1,l,Bk+1,l with Ak,l,Bk,l with the help of (107), xk+2 with

xk + 2∆xk and let us expand the preceding expression in the powers of ∆xk, by
keeping the terms of ∆x2k . The little long calculation, like for (53′′) gives:




Ψk+1,l(xk+2∆xk,yl)

= [Ak,le−iαk,l xk (1−2iαk,l∆xk−2α2k,l∆x
2
k)+Bk,leiαk,l xk (1+2iαk,l∆xk−2α2k,l∆x

2
k)]

×[Ck,le−iβk,l yl +Dk,leiβk,l yl ].

(122)

With the three expressions (120), (121), (122) one easily forms the derivative(
∂2Ψ
∂x2

)
xk,yl

using the formula (51). One finds:

(
∂2Ψ
∂x2

)

xk ,yl
=(Ak,le

−iαk,l xk +Bk,le
iαk,l xk )(Ck,le

−iβk,l yl +Dk,le
iβk,l yl )(−α2k,l)

= Ψk,l(xk,yl)(−α2k,l).

(123)

Quite the same way, one obtains:
(

∂2Ψ
∂y2

)

xk,yl

=Ψk,l(xk,yl)(−β2k,l). (124)

Recalling the formulas (101) one easily sees that equation (93) is satisfied by the

functions Ψ(x,y) (117) and (118).
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4.3 Determination of the arbitrary constants

The problem we considered of two particles in one dimensional space can

be interpreted as a problem of one particle represented in the configuration space

of two dimensions – a plane. In this plane, we choose the two perpendicular

coordinate axes OX and OY .

Let us consider the function Ψρ,σ(x,y) (118). For a fixed value of the index

σ, (118) will be the solution of the wave equation, valid in the horizontal band

between the lines with equations y = yσ and y = yσ+1. If we know the numerical

values of A0,0,B0,0,C0,0,D0,0 and those of A0,σ,B0,σ, the values of the wave function

Ψ will be known in the chosen band. To have the values of Ψ in the next band,

between the lines y= yσ−1 and y= yσ, one has to know also the numerical values

of A0,σ−1 and B0,σ−1. One sees that (118) contains sequence of indeterminate

parameters A0,σ,B0,σ (σ = 1,2, . . .). But since the equation (118) contains them

linearly in the numerator and in the denominator, one can divide those last to A0,σ

(supposing they are not zero) and one will have like arbitrary parameters their

rations: b0,σ =
B0,σ
A0,σ

(Ψ is a homographic function with respect to b0,σ). Then in

all the horizontal bands which we have defined above, the solution Ψ will contain

an arbitrary parameter b0,σ or also, in all these bands – a sequence of arbitrary

parameters. Their values should be fixed, so that one can calculate the values of

Ψ for all x and y.

Let us consider a horizontal band between the lines y = yσ and y = yσ+1.

With this, the values of the elements m11, . . . ,m22 of the matrix Mρ,0,0 which en-

ter in (118), will be known as functions of xρ (the upper bound of the integrals

in the elements m11, . . . ,m22). Since we have on the above indicated band an ar-

bitrary parameter b0,σ, we can choose it in a way that Ψρ,σ(xρ,yσ) takes a given

value which we indicate with gσ. In the same way we can choose the param-
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same way, we will find
(

∂2Ψ
∂y2

)
xk,yl

and the verification will be immediate.

Equation (116) gives:



Ψk,l(xk,yl) = (Ak,le−iαk,l xk +Bk,leiαk,l xk )(Ck,le−iβk,l yl +Dk,leiβk,l yl )

Ψk,l(xk+1,yl) = (Ak,le−iαk,l(xk+∆xk) +Bk,leiαk,l(xk+∆xk))(Ck,le−iβk,l yl +Dk,leiβk,l yl )

(120)

Following (52) and by keeping the infinitesimals of second order one has:



Ψk,l(xk+1,yl) = [Ak,le−iαk,l xk(1− iαk,l∆xk− 1
2α2k,l∆x2k)+Bk,leiαk,l xk

×(1+ iαk,l∆xk− 1
2α2k,l∆x2k)][Ck,le−iβk,l yl +Dk,leiβk,l yl )].

(121)

From (116) we obtain:

Ψk,l(xk+2,yl) = Ψk+1,l(xk+2,yl)

= (Ak+1,le
−iαk+1,l xk+2 +Bk+1,le

iαk+1,l xk+2)(Ck+1,le
−iβk+1,l yl +Dk+1,le

iβk+1,l yl ).

Let us now replace Ak+1,l,Bk+1,l with Ak,l,Bk,l with the help of (107), xk+2 with

xk + 2∆xk and let us expand the preceding expression in the powers of ∆xk, by
keeping the terms of ∆x2k . The little long calculation, like for (53′′) gives:




Ψk+1,l(xk+2∆xk,yl)

= [Ak,le−iαk,l xk (1−2iαk,l∆xk−2α2k,l∆x
2
k)+Bk,leiαk,l xk (1+2iαk,l∆xk−2α2k,l∆x

2
k)]

×[Ck,le−iβk,l yl +Dk,leiβk,l yl ].

(122)

With the three expressions (120), (121), (122) one easily forms the derivative(
∂2Ψ
∂x2

)
xk,yl

using the formula (51). One finds:

(
∂2Ψ
∂x2

)

xk ,yl
=(Ak,le

−iαk,l xk +Bk,le
iαk,l xk )(Ck,le

−iβk,l yl +Dk,le
iβk,l yl )(−α2k,l)

= Ψk,l(xk,yl)(−α2k,l).

(123)

Quite the same way, one obtains:
(

∂2Ψ
∂y2

)

xk,yl

=Ψk,l(xk,yl)(−β2k,l). (124)

Recalling the formulas (101) one easily sees that equation (93) is satisfied by the

functions Ψ(x,y) (117) and (118).
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4.3 Determination of the arbitrary constants

The problem we considered of two particles in one dimensional space can

be interpreted as a problem of one particle represented in the configuration space

of two dimensions – a plane. In this plane, we choose the two perpendicular

coordinate axes OX and OY .

Let us consider the function Ψρ,σ(x,y) (118). For a fixed value of the index

σ, (118) will be the solution of the wave equation, valid in the horizontal band

between the lines with equations y = yσ and y = yσ+1. If we know the numerical

values of A0,0,B0,0,C0,0,D0,0 and those of A0,σ,B0,σ, the values of the wave function

Ψ will be known in the chosen band. To have the values of Ψ in the next band,

between the lines y= yσ−1 and y= yσ, one has to know also the numerical values

of A0,σ−1 and B0,σ−1. One sees that (118) contains sequence of indeterminate

parameters A0,σ,B0,σ (σ = 1,2, . . .). But since the equation (118) contains them

linearly in the numerator and in the denominator, one can divide those last to A0,σ

(supposing they are not zero) and one will have like arbitrary parameters their

rations: b0,σ =
B0,σ
A0,σ

(Ψ is a homographic function with respect to b0,σ). Then in

all the horizontal bands which we have defined above, the solution Ψ will contain

an arbitrary parameter b0,σ or also, in all these bands – a sequence of arbitrary

parameters. Their values should be fixed, so that one can calculate the values of

Ψ for all x and y.

Let us consider a horizontal band between the lines y = yσ and y = yσ+1.

With this, the values of the elements m11, . . . ,m22 of the matrix Mρ,0,0 which en-

ter in (118), will be known as functions of xρ (the upper bound of the integrals

in the elements m11, . . . ,m22). Since we have on the above indicated band an ar-

bitrary parameter b0,σ, we can choose it in a way that Ψρ,σ(xρ,yσ) takes a given

value which we indicate with gσ. In the same way we can choose the param-
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eter b0,σ−1 in the horizontal band between y = yσ and y = yσ−1 in a way that

Ψρ,σ−1(xρ,yσ−1) = gσ−1, where gσ−1 is another given value, close to gσ. Then

we can find for those arbitrary parameters b0,σ (σ = 1,2, . . .) values such that the

functionΨ takes sequence of given values gσ,gσ−1, . . . for a fixed value of x. In the

limit, when the intervals of division ∆x,∆y tends to zero, the sequence of values

g0,g1,g2, . . . can be considered as a sequence of values of a function g(y) of y for

y = y0,y1,y2, . . .. Thus if we can determine in the indicated way the parameters

b0,σ, the function Ψ(x,y), solution of the wave equation, will merge with a given

function of y, for a given value of x= xρ.

Ψ(xρ,y) = g(y) (125)

The sketched operations are easy to perform. One has to write for the horizontal

band between yσ and yσ+1 the condition:

Ψρ,σ(xρ,yσ) = g(yσ) = gσ(σ = 1,2, . . .). (126)

With the help of (118) one sees that the preceding condition expresses gσ as a

homographic function of the parameter b0,σ and one gets the value of b0,σ.

The so found formula gives in principle the general solution for the parame-

ters b. Obviously, it is not very easy to discuss, in this general case, if this formula

can be used for all the given values of yσ, this is to say, if b0,σ will have finite

values for all the given gσ. One should never, for example, choose the modulus of

one of the parameters b0,σ equal to 1, ∥b0,σ∥ = 1, because if this is realized, the

denominator in the formula (118) could vanish for certain values of the variables.

We will apply the formula (118) in general to find the approximate solution

of the wave equation. In the case when the potential function is slowly varying, we

have already seen in the problem in one dimension that of the four terms m (47) of

the matrix M (29′), one should keep in first approximation only the two elements

78

m011 and m
0
22 given by (39) and (39

′). By assuming that F(x,y) is a function which

varies slowly, here we will keep also only the elements m011 and m
0
22 of the main

diagonal of the matrix Mρ,0,0. Again, of the terms n11, . . . ,n22, one will keep only

n011 and n022. The simplified formula which we thus have found for the b0,σ, by

replacing in it the approximate values of m and n, shows that b0,σ are generally

slowly varying functions of x and y. In the case when the mutual interaction of the

two particles (x) and (y) can be ignored, one knows that the solution of the wave

equation can be found by separation of the variables. We can easily find this case

from formula (118) if the term F12 in the potential function is negligible, since in

this case the conditions of continuity (103) are satisfied for A0,0 = A0,1 = A0,2 = . . .

and B0,0 = B0,1 = B0,2 = . . .. We will assume that in first approximation, we can

take in the formula (118):


A0,0 = A0,1 = A0,2 = . . .= A0,σ = A

B0,0 = B0,1 = B0,2 = . . .= B0,σ = B
(127)

This convention simplifies a great deal the calculations which will occur in the

practical cases. This choice of the amplitudes A and B indicates only that our

functionΨ takes, for x= xρ, a sequence of values which are the values of a slowly

variable function g(y). Vice versa, if one puts in (120) A and B according to (127),

one will find this sequence of values. Thus, we will accept that (127) exists. The

conditions (127) are equivalent to the unique condition:

b0,0 = b0,1 = . . .= b0,σ = b. (128)

With this convention we write the solution (118) in the form:




Ψρ,σ(x,y) = [(m11+bm12)e−iαρ,σx+(m21+m22b)eiαρ,σx][(n11C0,0+n12D0,0)e−iβ0,σy

+(n21C0,0+n22D0,0)eiβ0,σy]Ae
−iα0,0x0+Beiα0,0x0

e−iα0,σx0+beiα0,σx0

(129)
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When the intervals of division ∆x,∆y tend to zero, all the terms in (129), which
depend on xρ and of yσ, become known function of x and y. We can then give to

(129) a final form, removing the indexes ρ and σ:




Ψ(x,y) = [(m11+bm12)e−iα(x,y)x+(m21+m22b)eiα(x,y)x]

×[(n11C0,0+n12D0,0)e−iβ(x0,y)y+(n21C0,0+n22D0,0)eiβ(x0,y)y]Ae
−iα(x0 ,y0)x0+Beiα(x0 ,y0)x0
e−iα(x0 ,y)x0+beiα(x0 ,y)x0

(130)

This formula allows us to calculate the value of Ψ for all the values of x and y.

One should not forget also that the elements m in (130) are functions of x and y;

m11(x,y), . . ., just as the n are functions only of y and x= x0; n11(x0,y), . . ..

Let us assume now that the studied problem is a problem of collision, this is

to say, for very large values of x and y, the potential F(x,y) (98) tends to zero. In

this case, the terms α and β from (129) become constants. From the other side,

we saw that for the linear problem, the matrix M (29′) becomes a unity matrix

in a domain where the potential is constant (or null). Since the matrix Mk+ρ,k,l

(111) and Nk,l+σ,l (115) have the same form as M (29′), one sees easily that with

the hypothesis we used on F(x,y), one has m11 ∼ m22 ∼ 1, while m12 ∼ m21 ∼

0 and also that n11 ∼ n22 ∼ 1, while n12 ∼ n21 ∼ 0 for very large values of x

and y. Recalling formula (118), one sees that each bracket will represent as an

asymptotic form a linear combination of two monochromatic plane waves, and

the last factor (the fraction) will become constant. Consequently, the choice (127)

of the amplitudes A and B determines such integral Ψ of the wave equation, which

is required in the problem of collision, this is to say, that these asymptotic values

describe a uniform motion of the two particles.

Let us now take the form (119) which we gave to the solution (116) of the

wave equation. It is clear that one can make on this formula analogous consider-

ations to those we made for formula (118). One will have the values of Ψ at all

points (xρ,yσ) if one knows the constants Cρ,0,Dρ,0(ρ = 1,2, . . .). In each vertical
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band between the vertical lines x = xρ,x = xρ+1 one has two constants Cρ,0,Dρ,0

or also, if we divide the numerator and the denominator of (119) byCρ,0 and if we

introduce the quantity dρ,0 =
Dρ,0
Cρ,0
, one will have an undetermined parameter dρ,0 in

each vertical band. One can use these parameters, like in the case of the solution

(118), so that the functionΨ (119) takes a sequence of given values rρ(ρ= 1,2, . . .)

for given y. We will make also the simplification like (127):


C0,0 =C1,0 = . . .=Cρ,0 =C

D0,0 = D1,0 = . . .= Dρ,0 = D
(131)

which one can write in another way:

d0,0 = d1,0 = . . .= dρ,0 = d. (132)

We can finally give that second form of the solution, coming from (119), by re-

moving the index ρ in the mean time:




Ψ(x,y) = [(n11+n12d)e−iβ(x,y)y+(n21+n22d)eiβ(x,y)y]

×[(m11A0,0+m12B0,0)e−iα(x,y0)x+(m21A0,0+m22B0,0)eiα(x,y0)x]Ce
−iβ(x0 ,y0)y0+Deiβ(x0 ,y0)y0

e−iβ(x,y0)y0+deiβ(x,y0)y0

(133)

where one has to write this time for the elements m and n in (133), expressed as

functions of x and y: m11(x,y0), . . . and n11(x,y), . . ..

We can now generalize the preceding solution of the Schrödinger equation

in the case of any number of particles in any field. The wave equation in this

configuration space is:

N

∑
i=1

1
mi

∆iΨ+
8π2

h2
[E−F(x1, . . . ,x3N)]Ψ = 0 (134)

We can consider that x1, . . . ,x3N vary in the given interval x0x′. Let us divide this

interval to n parts, assuming that the potential has a constant value when each

particle moves in the elementary interval. The solution of the wave equation for

these small variations of the variables will be the product of 3N functions, each
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function being a linear combination of two exponential functions of one variable.

For a determined choice of intervals, one can write the corresponding solution in

the form:

Ψk,l,...,p(x1,x2, . . . ,x3N)=
N

∏
j=1
[(Aj)k,l,...,pe−i(α j)k,l,...,px j+(Bj)k,l,...,pei(α j)k,l,...,px j ]. (135)

One should write 2.3N continuity conditions like (103) on the edges of the neigh-

boring elementary barriers. Of these conditions, one can eliminate the amplitudes

with the help of 3N matrices of two rows and two columns, and one will finally

arrive at a form of the wave functionΨ like (118). The question of convergence in

the elements of the matrices does not differ from that in the already studied cases.

One can determine the amplitudes Aj,Bj in a way such that the wave func-

tion takes a sequence of given values: values of one function of xk, when the other

variables xi (i ̸= k) have fixed values. If we assume that all the amplitudes Aj are

equal to a quantity A, and the same for the other amplitudes, this will be equiva-

lent to assuming that if the particles are far enough from each other, so that one

can neglect their mutual interactions, the wave function will be decomposed to a

product of monochromatic plane waves. This is the condition in the limit for the

problem of collision of particles.
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CHAPTER 5

5.1 The problem of barriers in the relativistic case

The problem of relativistic passage of particles trough a potential barrier will

be treated with the Dirac equation as a departure point. We will give in the begin-

ning some basic concepts of the theory of Dirac.

The Schrödinger equation is not relativistic. It does not contain other effect

than the spin of the electron. One knows that this equation can be found in a formal

manner starting from the classical equation of Hamilton. To this end, one has to

replace in the latter equation in rectangular coordinates the conjugated moments

pk of the coordinates qk with the operators − h
2πi

∂
∂xk , and the Hamilton function S

with the wave function.

It has been tried to find the relativistic wave equation following the same

path. In the special relativity one has the following relation:

1
c2
(W − εV )2− ∑

x,y,z
(px−

ε
c
Ax)

2−m2c2 = 0 (136)

whereW is the total energy of the electron,V is its potential energy and A(Ax,Ay,Az)

– the vector potential. By introducing the operators:


P1 =− h

2πi
∂
∂x +

εAx
c ,P2 =− h

2πi
∂
∂y +

εAy

c ,

P3 =− h
2πi

∂
∂z +

εAz
c ,P4 = 1

c
h
2πi

∂
∂t +

εV
c ,

(137)

one finds an operator, which applied to the wave function, gives the equation:

(P24 −
3

∑
i=1

P2i −m20c
2)Ψ = 0 (138)

which has been considered as the relativistic wave equation. But this equation

has some serious defects like M. Dirac has showed. First, it does not allow to
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define a probability density of the presence which will be always positive. Second

the equation (138) is of second order with respect to t and in order to know the

function Ψ in each moment, one has to have the initial values of Ψ and ∂Ψ
∂t . To

avoid this last difficulty, one has to take an equation, which will be of first order

with respect to t, and in principle, the relativity requires that it should be the same

for x,y and z. Dirac admits that the equation (138) is a consequence from an

equation of first order of many wave functions, which one finds by decomposing

(138) to two factors of first order. This equation is [8]:

(P4+
3

∑
i=1

diPi+α4m0c)Ψk = 0, (k = 1,2,3,4). (139)

The αi are Hermitian matrices of four rows and four columns, which have the

anticommutative property:

αiαk+αkαi = 0(i ̸= k), α2i = 1(k = 1,2,3,4)

and it acts on the functionsΨk (k= 1, . . . ,4) following the relation: αiΨk =
4

∑
l=1

(αi)klΨl .

The explicit form of (139) is:



( 1
c

h
2πi

∂
∂t +

εV
c +m0c
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Ψ1−

(
h
2πi

∂
∂x + i h

2πi
∂
∂y −

εAx
c − i εAy

c
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Ψ4

−
(

h
2πi

∂
∂z −

εAz
c
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Ψ3 = 0
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c

h
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εV
c +m0c
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h
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∂
∂x − i h

2πi
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εAx
c + i εAy

c
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h
2πi

∂
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εAz
c
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c
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εV
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2πi

∂
∂x + i h

2πi
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εAx
c − i εAy

c
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−
(

h
2πi

∂
∂z −

εAz
c

)
Ψ1 = 0

( 1
c

h
2πi

∂
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εV
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h
2πi

∂
∂x − i h

2πi
∂
∂y −

εAx
c + i εAy

c
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Ψ1

−
(

h
2πi

∂
∂z −

εAz
c

)
Ψ2 = 0

(140)

84

Knowing the system of functionsΨk which satisfy the equation (140), the presence

probability of the particles in the volume dxdydz is ∑4
i=1ΨiΨ∗

i dxdydz. But the

determination of such solution is not easy if the fields are arbitrary. In the case

when A⃗= 0 and V is function of one of the variables, there is the method of Pauli

[13] of solution of the Dirac equation.

5.2 Passage of particles trough a rectangular potential barrier

We will study now the passage of particles, whose motion is described by

the Dirac equation, trough a potential barrier. This problem is treated by O. Klein

[10].

Let us take the case in which the motion of the particles is done following the

given direction OX . We suppose that the potential energy is null to the left of a

pointM with abscissa x0 and that it has a constant value P to the right of M.

The potential vector is null everywhere. The particles which propagate from

left to right with constant speed, come and hit the separation surface at M. One

part of the particles is reflected, and another enters in the second medium. The

equation of propagation to the left ofM is:
(
1
c

h
2πi

∂
∂t

+α4m0c−
h
2πi

α1
∂
∂x

)
Ψk = 0 (141)

and to the right ofM:
(
1
c

h
2πi

∂
∂t

+
P
c
+α4m0c−

h
2πi

∂
∂x

)
Ψk = 0. (142)

We will look for a solution of (141) in the form of a monochromatic plane wave

represented by the system of four functions (Ψi)k (k = 1, . . . ,4).

(Ψi)k = (ai)ke
2πi
h (Et−px) (143)

where all the amplitudes (ai)k are constants. By substituting (143) in (141), we

will find the conditions of existence of the solution in the form of a determinant
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equal to zero. By expanding it, one finds:

(
E2

c2
−m20c

2− p2
)2

= 0. (144)

We know that (144) is realized always according to (136). One verifies also that

all the subdeterminants of three rows and three columns of the above mentioned

determinant are null. Thus, of the four quantities (ai)k(k = 1,2,3,4) only two are

independent, for example (ai)3 and (ai)4. Let us set (ai)3 = A,(ai)4 = B. The

equations (141) give:

(ai)1 =− pA
E
c +m0c

, (ai)2 =
pB

E
c +m0c

. (145)

We know thus the incident wave Ψi. For the reflected wave Ψr, we can set:

(Ψr)k = (ar)ke
2πi
h (Et+px), (k = 1,2,3,4). (146)

For the (ar)k we will have the same condition (144). Two of the (ar)k will be

independent, for example (ar)3 = C,(ar)4 = D. One will find similarly for the

other amplitudes:

(ar)1 =
pC

E
c +m0c

, (ar)2 =− pD
E
c +m0c

. (147)

In the interior of the second medium, the wave equation for the transmitted wave

Ψt will be equation (142), whose solution is the wave Ψt :

(Ψt)k = (at)ke
2πi
h ( E−P

c t−p1x). (148)

In the same way we will find that there are two independent amplitudes (at)3 =

C1,(at)4 = D1 and the two other amplitudes are:

(at)1 =
−p1C1

E−P
c +m0c

, (at)2 =
p1D1

E−P
c +m0c

. (149)
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When the wave in the Dirac Mechanics crosses a potential wall, it remains con-

tinuous. It was proved in [10] the same way as for the wave Ψ in the Shcrödinger

equation. Let us apply this in our problem. The wave function which exists on

the left of the point M is a superposition of the incident wave and of the reflected

wave. On the surface of separation, it should be equal to the transmitted wave.

This gives the conditions of continuity:

(Ψi)k+(Ψr)k = (Ψt)k (k = 1,2,3,5). (150)

Of these four linear equalities, one can get the amplitudesC,D,C1,D1 as functions

of A and B, which are considered as given.

5.3 Solution of the relativistic problem of barriers using the method of de-
composition of barriers

Let us assume that the electrons which propagate following the positive di-

rection of OX have to cross a potential barrier which extends from x0 to x′. The

potential is supposed to be null on the two sides of the barrier. The problem con-

sists of finding the ratio of reflected and transmitted particles. If the form of the

barrier is rectangular (P is constant inside the barrier), the problem is easy, since

one knows the solution of the Dirac equation in the interior of the barrier. The

solution of the equation between x0 and x′ is a sum of the two waves propagating

to the left and to the right. One has to write the conditions of continuity, simi-

larly to (150), which exist on the two edges of the barrier. For each wave one will

have two independent amplitudes. In short, one will have ten amplitudes and eight

conditions of continuity, from where one will express eight of the amplitudes as

functions of those of the incident wave.

Let us take a barrier which extends from x0 to x′, of any form, this is to say, the

potential is a given function P(x) of x, which we assume continuous and bounded.
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We divide the interval x0x′ to n parts, and the barrier to small elementary barriers

of base (xl+1,xl), the potential will have constant values P(xl), thus we will have

as a solution of the Dirac equation in (xl+1,xl) a sum of two monochromatic plane

waves. Indicating with ψl the wave which propagates to the right and with ϕl th e

one which propagates to the left, their respective components will be given by:

ψl,k = al,ke
2πi
h (Et−plx), ϕl,k = bl,ke

2πi
h (Et+plx), (k = 1, . . .n; l = 1, . . .n) (151)

On the common edge of the barrier (xl−1,xl) and (xl,xl+1) one will have the four

conditions of continuity:

ψl,k(xl)+ϕl,k(xl) = ψl+1,k(xl)+ϕl+1,k(xl),(k = 1,2,3,4) (152)

The four amplitudes which characterize each wave will be then expressed by two

of them, connected by an equality of the form (144), there will be only two inde-

pendent among the four amplitudes. We indicate by:

Al = al,3, Bl = al,4 (153)

the independent amplitudes of the wave which propagates to the right and by:

Cl = bl,3, Dl = al,4 (154)

those of the wave propagating to the left. By setting:

gl =
pl

E−Pl
c +m0c

(155)

we will have, exactly as we had for the formulas (145):


al,1 =−glAl, al,2 = glBl,

bl,1 = glCl, bl,2 =−glDl

(156)
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since one has, in short, always the same problem as on page 74 – the plane wave

in Dirac’s theory. With the help of the preceding notations, we can now write

explicitly the conditions (152):



gl(Ale−iplxl −Cleiplxl ) = gl+1(Al+1e−ipl+1xl −Cl+1eipl+1xl )

Ale−iplxl +Cleiplxl = Al+1e−ipl+1xl +Cl+1eipl+1xl

gl(Ble−iplxl −Dleiplxl ) = gl+1(Bl+1e−ipl+1xl −Dl+1eipl+1xl )

Ble−iplxl +Dleiplxl = Bl+1e−ipl+1xl +Dl+1eipl+1xl

(157)

From this system of linear equations with respect to the four quantities A, B,C, D,

one can express the amplitudes with index l+1 as functions of those with index l.

The determinant ∆l+1 of the coefficients of the amplitudes of the right part of equa-

tions (157) has the value 4. One can consider the amplitudes Al+1, Bl+1,Cl+1, Dl+1

as the components of a vector r⃗l+1. The equations (157) express a transformation

of the vector r⃗l+1 to the vector r⃗l with the help of a matrix Ml of four rows and

four columns:

r⃗l+1 =Ml⃗rl. (158)

It is easy to solve the equations (157) and one finds for Ml = ∥(ml)αβ∥, (α,β =

1,2,3,4):




(ml)11 = (1+ρl)e−i(pl+1−pl)xl ,(ml)12 = (1−ρl)ei(pl+1+pl)xl ,

(ml)21 = (1−ρl)e−i(pl+1+pl)xl ,(ml)22 = (1+ρl)e−i(pl+1−pl)xl ,

(ml)33 = (1+ρl)ei(pl+1−pl)xl ,(ml)34 = (1−ρl)ei(pl+1+pl)xl ,

(ml)43 = (1−ρl)e−i(pl+1+pl)xl ,(ml)44 = (1+ρl)e−i(pl+1−pl)xl ,

(ml)13 = (ml)14 = (ml)23 = (ml)24 = (ml)31 = (ml)32 = (ml)41 = (ml)42 = 0
(159)

where one sets ρl =
gl
gl+1
. From (155), gl and gl+1 have close values, consequently,
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the value of ρl is close to unity. The difference pl+1− pl is very small. Since all

the terms ofMl are divided by 1
2 , it follows that all the terms of the main diagonal

have values close to unity and the other terms are very small, thus Ml is almost

diagonal. Making the successive eliminations of the amplitudes, one will find the

relation:

rl+ j =Ml+ j−1Ml+ j−2 . . .Mlr⃗l =Ml, j⃗rl (160)

where Ml, j is the matrix product. If we introduce the two matrices σl and τl , to

which the matrix Ml decomposes, it can be written:

Ml =

����
σl 0
0 τl

���� . (161)

Because of this form ofMl , the matrixMl, j (160) will be formed by two matrices σ

and τ such that σ = σl+ j−1σl+ j−2 . . .σl and τ = τl+ j−1τl+ j−2 . . .τl . From the other

side we asked that ρl =
gl
gl+1
, where g (155) is a known function of x. One can then

write:
ρl =

gl
gl +∆gl

= 1− ∆gl
gl

1
2
(1+ρl) =1−

∆gl
2gl

= e−
∆gl
2gl ;

1
2
(1−ρl) =

∆gl
2gl

.

By stopping always on the infinitesimals from the first order, one can represent the

matrix σl in the following way:

σl =

������
ei∆plxl−

∆gl
2gl

∆gl
2gl

e2iplxl

∆gl
2gl

e−2iplxl e−i∆plxl−
∆gl
2gl

������
(162)

and the same way for the matrix τl . Now σl and τl are in the same form as the

matrixMj (33). Then, there is no difficulty in forming the products σ and τ, since

the elements of the matrices σ and τ are composed of those of the matrixM (29′).

The elements σαβ, (α,β = 1,2) will be given by infinite series as (47). One will

thus have σ11 = ∑∞
i=0σ2i11, . . . and also τ11 = ∑∞

i=0 τ2i11, . . .. The integrals in σαβ and

ταβ will be known functions of x. With the help of the so-found matrices σ and

90

τ, one immediately writes the matrix Ml, j. To know the matrix Ml, j is to know

the solution of the Dirac equation, since this solution was given in each interval

(xl+1,xl) by the functions (151) and to find this solution in the whole interval x0x′,

one needs only the coefficients al,k,bl,k as functions of x, which are given to us

by the knowledge of the matrix Ml, j. By keeping only the elements σ011 and σ022

of the main diagonal of σ and in analogous way – the elements τ011 and τ022 of τ,

the solution of the Dirac equation which one finds this way, coincides with the

solution of Pauli [13] in the case, where the geometric optics is valid.

Since the two first equations (157) contain only the amplitudes A and C, one

can determine from these two equations only Al+1 andCl+1 as functions of Al and

Cl with the help of the matrix σl . In the same way, one will determine Bl+1 and

Dl+1 from the two last equations (157) with the help of the matrix τl . One could

then do without the matrixMl (159), but we used it, because there are cases where

the system (157) does not decompose to two groups of equations, each containing

only two of the amplitudes.

In the case where the potential vector is not null, and where the scalar poten-

tial is a function of all the coordinates, the solution of the Dirac equation presents

much more difficulties and we would not pursue it here.
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