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Acen Jlayes. BBPXY ITPOBJIEMA 3A IIOTEHLIUAJIHUTE BAPUMEPU U PEITABAHETO
HA YPABHEHUETO HA IPLOAVHTEP

3amauara 3a MOTEHIIMAIHUTE OapHUepH ce M3II0I3Ba aKTHBHO B KJIACHYECKaTa BBIHOBA ONTHKA,
HO ¢ 0COOCHO BayKHA 3a BHIIHOBATa MeXaHMKa. s IMOKa3Ba SICHO PA3IMKUTE MEX/Iy KiIacHuecKaTa U
BBJIHOBATa MEXaHUKa. MHOTO 3aa4y OT IOCIIeHATa MOTaT Jja ObaaT penIeH: NPUOIMKEHO Upe3 U3-
M0JI3BaHe Ha MOTeHnuanHu 6apuepu. Hanmprumep kpruBara Ha ITOTEHIIMATHATA EHEPTHs B 0071aCTTa, B
KOSITO TIOTEHIHATBT CE IPOMEHS IUIABHO, MOXKE 1A C€ 3aMEHH C MHO)KECTBO CTHIIAJIOBUIHN OapHepu
¢ mpocta popma, Haif-4eCTO — MPaBOBI'BIHA. B IIO-ClI0XKHUTE CIIydan, B KOUTO IMaMe HIKOJIKO TIJIaB-
HU OapuepH, BCEKH OT TAX MOXeE Jla Ce 3aMECTH € peJuiia OT IPOCTH NMPaBOBI'BIHU Oapuepu. Torasa
pelraBaHeTo Ha 3a/1adaTa ce CBeX/a 0 MHOTOKPaTHO NMpecMsTaHe Ha IIPOCT NPaBOBI'bIEH Oapuep.

Hue pa3BuBamMe Ta3u uaest — 3aMeCTBaHETO Ha JaJIeH IUIaBeH Oapuep ChC CepHs OT MPaBOBIBI-
HH Oapuepu. 3amadara ce pelaBa JIECHO B €JHOMEpHHS ciIydaid. M3mon3Balikiu BEKTOPHU O3Hade-
HU, HAE HaMUpaMe MaTpHIjaTa Ha Mpexo/a, KOSTO CBbP3Ba aMILTUTYaTa Ha IIpexojia OT Iajalara
BBJIHA KbM OTPa3eHaTa U IIPEeMHHANIATa BBIIHA.

IIpunaraneTo Ha TO3W METOZ BOAU JICCHO JJO U3BECTHOTO PEIICHUE HA BRIHOBOTO YpaBHEHHE
3a JIMHEEH MOTEeHIINA, KOETO ce H3passBa upe3 (pyHknuute Ha bece.

3a 3agavara c n1 Tena ce MoxydaBar IMOJ0OHH 37 MaTPHULH, UTPACIIH ChIaTa POJIL.

Haxpast Hue n3non3BaMe TO3M METOA Ha MPUONIDKEHO Ipe/icTaBsHe Ha IIOTCHIHATHUS Oapuep
3a pelraBaHe Ha eAHOMEPHH 33/1a4H C PEIAaTUBHCTHYHOTO ypaBHEHUE Ha Jlupak.

Assene Datzeff. ON THE PROBLEM OF POTENTIAL BARRIERS AND THE SOLUTION
OF THE SCHRODINGER EQUATION

The problem of potential barriers is in active use in Classical Wave Optics, but it is of particu-
lar importance in the Wave Mechanics. This problem clearly outlines certain differences between
Classical Mechanics and Wave Mechanics. Many problems of the latter can be solved approxi-
mately by the use of potential barriers. One replaces, for example, the potential energy curve in a
domain where the potential varies a lot by a potential wall and also a potential hill by a barrier with
simple shape, mostly rectangular. In other cases, where the potential curve forms series of potential
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hills, one can replace the latter with series of simple barriers. One should then repeat many times the
calculations concerning a simple barrier.

We develop this idea — of replacing given barrier with a series of rectangular barriers. The
problem is easy to pose in the case of motion in one dimension. Using the vector notations, we have
found a transformation matrix which connects the amplitudes of the incident wave with those of the
reflected and of the transmitted waves.

The application of this method in the case when the potential function is linear gave us very
easily the known solution of the wave equation, expressed as Bessel series.

For the problem of # bodies one has to write 3# matrices of the same form.

In the end, we have used the method of decomposition of a potential barrier to found the solu-
tions of the relativistic equation of Dirac for the problem in one dimension.

Keywords: solution of the Schrodinger equation, solution of the Dirac equation, potential bar-

rier, rectangular approximation
PACS numbers: 03.65-w, 02.70.-c, 02.60.L;j
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PREFACE

The problem of potential barriers is in active use in Classical Wave Optics,
but it is of particular importance in the Wave Mechanics. This problem clearly
outlines certain differences between Classical Mechanics and Wave Mechanics.
Many problems of the latter can be solved approximately by the use of potential
barriers. One replaces, for example, the potential energy curve in a domain where
the potential varies rapidly by a potential wall and also a potential hill by a barrier
with a simple shape, mostly rectangular. In other cases, where the potential curve
forms series of potential hills, one can replace the latter with series of simple
barriers. One should then repeat many times the calculations concerning a simple
barrier.

On the pages that follow we develop this idea — of replacing given barrier
with a series of rectangular barriers. The problem is easy to pose in the case of
motion in one dimension. Using the vector notations, we have found a transfor-
mation matrix which connects the amplitudes of the incident wave with those of
the reflected and of the transmitted waves. This matrix allows us to express the
coefficients of reflection and the coefficients of transmission of the given barrier.
As a consequence of these formulas, one obtains the solution of the Schrodinger
equation in a series of multiple integrals. With the help of a dominant matrix, one
proves the absolute convergence of these series in the whole interval, which does
not contain the singular points of the potential function and the turning points in
the Classical Mechanics. For all those points, one does separate considerations.
The first approximate solution found with this method coincides with the approx-

imate solution obtained with the method of Brillouin-Wentzel. From the study we
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make using the latter method, follows that the calculation of the coefficients of
reflection and transmission is valid for barriers, in the interior of which, the wave
function becomes infinite at the turning points.

We have then developed second method of solving the wave equation. The
calculations were done with the help of matrices, as previously. The application
of this method in the case when the potential function is linear, gave us very easily
the known solution of the wave equation, expressed as Bessel series.

In one of the chapters that follows we have generalized the method of solving
the wave equation of one independent variable, for the wave equation of multiple
bodies in any motion, starting with the problem of motion of two bodies on a
straight line. The integral of the equation is written with the help of two transfor-
mation matrices which have the form of the transformation matrix of the problem
in one dimension. For the problem of n bodies one has to write 3n matrices of
the same form. Almost all considerations done in the case of the one-dimensional
problem can be applied easily on generalized problems and we haven’t done that
in detail in the last case.

In the end, we have used the method of decomposition of the potential barrier
to find the solutions of the relativistic equation of Dirac for the problem in one
dimension. As first approximation to this method we have found the approximate
solution given by M. Pauli.

In all of the considerations that follow one had to use many facts from the
theory of barriers. We have also done a brief exposé of this theory, using the
principal course of M. Louis de Broglie [7]. For all this we wish to express our
profound gratitude to M. Louis de Broglie, and also for the benevolent interest he

granted to this work.
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CHAPTER 1

1.1 The basics of potential barriers

All the problems in the Wave Mechanics consist of studying the propagation
of the waves associated with material particles. Every particle with mass m and
energy E, in the absence of exterior field, is associated with a de Broglie wave

(matter wave) with wavelength A:

(D

where £ is the Planck constant. When the particle is in exterior field defined with
U(x,y,z,t), the wavelength A of the associated particle and the coefficient of re-

fraction n are defined by:

/N S (2)
- V2m(E—U)’ V. E

and the wave function @ satisfies the Schrédinger equation:

8mim e Amim 0P

AD — = .
h? h ot

3)

If the exterior field does not depend on time, the equation (3) admits as so-
lution the standing (stationary) waves ® = ‘P(x,y,z)e%E’ , and the amplitude ¥

satisfies the Schrodinger equation:

812m
AY + T[E—U(x,y,z)]‘P:O. (4)

All the problems in the non-relativistic Wave Mechanics are related to the

solution of the Schrodinger equation. Unfortunately, finding this solution is not

easy even in simple cases. In the more complicated cases, for example, this of
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multiple particles interacting with each other, one cannot directly solve this prob-
lem. For the problem of Helium — two electrons moving around a nucleus — one
finds approximate and qualitative results with successive approximations. Even
the problem in one dimension is completely solved in the few cases, when the po-
tential function is in the form of a polynomial with not very high degree or a ratio
of such polynomials [12]. For the different cases which appear in the practice,
there are approximate methods for solving the wave equation. We are going to

present the often used method of Brillouin-Wentzel-Kramers.

1.2 Method of Brillouin-Wentzel [2, 15]
The Scrodinger equation (5) takes the following form in the case of motion

of a particle on a straight line which we choose to be the axis OX:

¥  8n*m
—+ —[E — Y =0.
B U =0 )

One searches for a solution of (5) in the form:

Y= I (6)
One expands the function y(x) in power series of %
= h\" h h\’
- i = — — e 7
y V;) (2m’> v =y0(¥) + 5=y (%) + <2m.) ya(x) + (7

Taking into account (7), we replace ¥ (6) in (5). By canceling the coefficients

in front of the different of powers of 2%, one finds the recurrence formulas:

J
Vi 4+ Y wyji—v =0, j=12 ... (8)
v=I
and explicitly the first terms of y are:

/ / 2
2 —Yo Yity

=2m|lE - U = — = - 9
Yo [ (X)], Y1 2y07 Y2 2y0 ) ( )
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Usually one works with the first two terms y, and y;:
wo L mE (10)
\/2m(E —U)

The integral in the exponent of (10) is the recursive Jacobi function. One
finds this function always when the approximation of geometrical optics is valid
and one must expect that the form (10) of W corresponds to this approximation.

Let us try to take into account the degree of the approximation that we have,
by retaining only the first two terms in the series (8). For this, we have to check

when the term y, is negligible against y;. According to (2), yo is proportional to n

and from (9) we obtain: dn
oo _dx dn
2y, 2n % o
According to (9) the value of y; is close to - = —Z—X.
v 2y, 4n” -y,
One sees that one can ignore y, against y; if =2<< 1 or if :
Vi
1d
<< (11)
ndx

Hence, it will be legitimate to use the approximate function (10) when the
coefficient of refraction n varies little on the scale of the wavelength of the wave,
which is to say, in the approximation of the geometrical optics.

In the domain where E < U the formulas we find are analogous to the previ-
ous ones, but the wave function becomes non-periodic.

The question of the convergence of the series (8) which the Brillouin-Wentzel
method introduces, is not an easy one. Often there are cases in which those series
are strongly divergent. In the neighborhood of the points where E = U, the value
of W according to (10) grows indefinitely. Hence to apply the formula (10), one
needs to exclude the regions around those points.

In the Kramers method [11], one searches for an approximate to (6) solution,
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in the form ¥ = g(x)cos f(x) in the interval (x;x,)* . One uses the condition
f(x2) — f(x1) ~ nm, where n is an integer. g(x) is a continuous function. On
arrives to a formula representing the real part of (10). The appropriate values of
(6) are found with the help of the condition from the classical theory of numbers,
that the phase integral is equal to nZh—TE

One can look for the integral of the Schrodinger equation for many particles
with successive approximation [2], but already the first approximation that one
finds represents the Jacobi equation for many particles and the integral of this

equation is not known in general.

1.3 Potential barriers

When the wave W associated with a particle crosses a surface S, on which
the potential has a finite discontinuity, ¥ remains continuous as well as its first
derivative along the normal to S [7]. This property is of great importance for the
problem of passage of particles trough a potential barrier.

The simplest problem of discontinuity of the potential appears in the case
where a plane separates two homogeneous media with constant potentials U; and
U,. If a monochromatic plane wave propagates in the first medium and falls on
this plane, it will be partially reflected and it will partially penetrate in the second
medium. One wants to determine the amplitudes of the reflected and the transmit-
ted waves, in order to know the intensities corresponding to this waves.

Rectangular barrier — We will operate similarly to the previous case of
passage of particles trough a potential barrier. We will consider a medium with a
potential U. On the two sides of this medium the potential is zero. We take the

axis x for normal to the parallel planes and we assume E < U. The plane wave

* Translator’s Note: This notation of the interval comes from the original paper. It stands for
the standard notation (x,,x,).
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which propagates following the positive direction of x, falls normally to the left
side of the barrier. A part of this wave reflects, other part penetrates the barrier.
Many reflections occur on the barrier and when the process becomes stationary,
to the left of the barrier there is an incident wave W¥; and a reflected wave ¥,
which corresponding amplitudes A and B and also two waves with amplitudes C
and D with propagate to the left and to the right respectively in the interior of
the barrier and also one transmitted wave ¥, with amplitude E to the right of the
barrier. Now the fundamental problem is to find the amplitudes B and E, because
| B*/| A |* = R measures the number of reflected particles and | E |*/|A [* =T —
the number of the transmitted particles (coefficient of transmission).

As we have already mentioned, the wave that crosses the discontinuity sur-
face of the potential, remains continuous, as well as its derivative along the normal.
Then, one has to write the conditions of continuity on the two parallel planes. One
will have four linear equation with respect to A,B,C,D,E. Solving those equa-
tions, one finds [7] the values of B and E and ultimately of R and T':

R (k3 — k3)?sin® kyl ‘ 12)
H3K3 cos kal + (k3 4 k3)? sin’ kyl

_ 43k _ 1
42k cos kol + (K3 +K3)2sin kol gy sin® [271: /om(E —U) l}
(129
where:
21

ki =

2
TVImE  and k2:%\/2m(E—U).

If U > E, one will have for R and T formulas similar to (12) and (12).
The formulas (12) and (12”) show that the number of transmitted particles T
is a function of the length / of the barrier and the energy E. If / is constant and

E varies, T is a function of E which passes trough successive maximums of the
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common value 7 = 1 for a series E, of the values of E. To all E, correspond
wavelengths A, of a wave which crosses the barrier completely. This choice of
the wave is a resonance of a kind, which we will see manifesting always in the
problem of barriers.

Triangular barrier — For rectangular barrier, the function U is constant and
the solution of the wave equation is very simple. The more complicated case
where U is a linear function of x was studied by Fowler and Nordheim [9]. With
a convenient choice of the coordinate origin O one has: U = 0 for x < 0 and
U =C—Fxforx >0 (F and C are constants). This is a barrier with the shape of

a rectangular triangle. In the interior of the barrier the wave equation is:

¥  8mim
W%-T[E—C—i-Fx]‘P:O. (13)

The integral of (13) is expressed by the Bessel functions J 1 and J_1. Writ-

1.
—3
ing the conditions of continuity on the two ends of the barrier, after long enough
calculations, one obtains the following value of the coefficient of transmission 7':

3 3
T:4[E(CC—E)]26_8:W. 14

If one calculates now T using the approximate wave function (10), one finds
[7] that the principle value of T is given by the exponential factor in (14).

When we discussed the domain of validity of equation (10), we saw that
it is not always valid in a domain which contains the points for which £ = U,
because W becomes infinite at those points. This is why we verify in many case,
like the previous one, that the value of T evaluated according to the approximate
formula (10) of the Brillouin-Wentzel gives the general phenomenon. Despite that
Y according to (10) is discontinuous in the interval, its application for evaluating
T gives sound results. We will see later the explication of this fact, when we find

the solution of the wave equation using alternative approach.
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Harmonic oscillator — The harmonic oscillator is formed by a material point
with mass m, attracted to the point O with a force kx proportional to the distance

of the origin x, k = 4n?v?m, where Vv is the frequency. Its equation is:

¥  8m’m k
i E— X% = 0. 15
g T B pX] (15

One finds [6, 7] that if E = (n+ %)hv, (n=0,1,2,...), one of the two inde-
pendent solutions of (15) is an eigenfunction. If E is not in the mentioned form,
then (15) does not have eigen-solutions.

Let us now consider a barrier for which the potential is with parabolic shape
U= %xz in the interval (x = —[,x = [) and it is zero outside this interval. If the
monochromatic plane wave falls on the barrier, one can remake the usual calcula-

tions for the barrier and to find the coefficient of transmission (transparency) 7. If

E # (n+ %)hv, one finds:

162 ek km . 2E
T=———= Win=— y=24/—,A="— 16
B’ ¢ HTap nt T hy (16)

If E = (n+ §)hv one finds:

e E/Um _kfl2 (17)
(e~ s eump =2

Thus when the energy of the falling particles coincides with one of the eigen-
values of the harmonic oscillator, the number of the transmitted particles is much
larger than in the case where E # (n+ %)hv. This is again a resonance phe-

nomenon.
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CHAPTER 2

2.1 Decomposition of a potential barrier into elementary barriers [5]

In the previous chapter, we presented some essential results on the problems
of potential barriers in the Wave Mechanics. Certain points have been developed
in detail due to their applications we will use in the following chapters.

As we have already mentioned, many problems of the passage of particles
trough a barrier of any kind can be solved well enough approximately by replac-
ing the given barrier of general shape with a barrier of simple shape where the
calculations are easy to make. It is natural to pose the problem of series of simple-
shape barriers, especially rectangular ones. One can hardly expect to realize in
practice a series of barriers of such shape but the problem when one considers
the said series on the place of a barrier with general shape, can be of interest for
the approximate solutions which one can obtain. If one has to work with limited
number of rectangular barriers, one repeats as many times as the given barriers
the calculations done for a rectangular barrier. But if this number is too big, the
calculations become too long and impractical. One can, then, make some simpli-
fications and find handy formulas for which one can take the limit. This is what
we will study.

We are to work with the problem of passage of particles trough barrier of any
shape, starting with the simplest case — this of propagation of particles following
a straight line OX.

The barrier extends for example from xo to x'. The potential curve which

defines the barrier is given by its equation U = U (x) and the wave equation of the
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Figure 1.

particles between x( and x” will be:

d’¥Y  8m’m

We suppose that U(x) is continuous, bounded and has first derivative for all
the values of x in (xox'), where U is composed of finite number of arcs of curves
which have the listed properties.

Let us divide the interval xox’ into n parts (n is an integer) with the points of
division on the abscissa xg,x;,X2,...,X,_1,%, = x'. For this points of division we
make the perpendiculars to OX which cross the curve U at the points U;,U,, .. ..
If now we draw horizontal lines from Uy, Us,, ... until they intersect the lines per-
pendicular to OX and passing trough x;, x3, ... we will form a broken line with the
shape of a step, inscribed in the curve U. The method for studying the passage of
particles trough the barrier U will consist of studying the corresponding case of a
barrier formed by the broken line and taking the limit 7 — co.

Let us suppose that the particles propagate in the direction OX moving uni-
formly. The propagation is represented by a monochromatic plane wave with

amplitude Ay:
2n

2mE
p v

¥(x) = Age *, k
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where we didn’t write the factor e**"!

, which should be assumed. E is the energy
of the particles. The phenomenon which will be produced from physical point of
view when the wave W reaches the barrier is the following. One part if the wave
is reflected by the first elementary barrier of width x, —x; and of height U (x;),
another part penetrates trough the barrier. On its turn, this part is also partially
reflected from the second barrier and it partially penetrates and so on. Effectively
in every barrier there will be a group of waves which propagates in the direction
OX and another group moving in the opposite direction. The result will be that in
every barrier there is one wave moving to the right and one moving to the left. The
latter two waves will have complicated form if the barriers have finite widths but
if x; —x;_; is very small, one can consider the ensemble of portions of the waves in
the elementary barrier x; —x;_; as forming two parts of one monochromatic plane
wave which propagates to the right and another which propagates to the left. Phys-
ically, one can say that in every small barrier there is certain probability to find the
particles moving to the left or to the right. From purely mathematical point of
view one can say that the Schrédinger equation which describes the movement of
particles, admits in every elementary barrier a solution ¥ which is linear combi-
nation of two monochromatic plane waves which propagate to the left and to the
right respectively. If U (x;) is the value of the potential energy in the barrier with
width x;; | —x;, the wave equation valid in the interval (x;,x; ) is:

dz‘Pj 87sz
dx? h?

[E—-U(x;)]¥;=0 (18)

and its complete solution valid for the values of x between x; and x;:

W;(x) =Aje 7"+ Be”, (j=1,2,....n—1) (19)
with
21
yj =\ 2mlE = Ulx))] (19')
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If E > U}, one will have as a solution a true wave, if E < U;, one will not have,
strictly speaking, a wave but a real non-periodic function. Nevertheless, this does
not affect the reasoning which follows. We have already seen (p.4) that the wave
¥ and its derivative should be continuous at the ends of the barrier crossed by the
wave W. In our case, this should be true at all ends common for two neighboring
barrier. On will have then the conditions of continuity, which will be for example

for x = x;:

d¥; d¥
=t (G2) =(%), @
where the explicit form (removing the factor i in the second equation):

Ajeiiijjﬂ +Bjeiijj+l :14j4rleiiyj+lxjurl +Bj+leiyj+lxj+l
—iy;x; iyjx; — —iyji1X) iyji1X;
yj(A]e YjXj+1 _Bje)’j 1+l) —)’j+1(Aj+le Yj+1Xj+1 _Bj+1e}/+l 1+1) (21)

(j=0,1,2,...,n—2)

Ap_je D15 4 B -1 — Ce= 0%
(22)

Vn1 (An_le*iymxn _ Bn_lei)’n—lxn) — yoce*iyoxn
The amplitude of the transmitted wave is indicated by C, this of the reflected wave
— by By.

Since the barrier is composed of n — 1 successive barriers, one has 2n con-
ditions like (21) and (22) which allow us to eliminate the amplitudes A;,B;(j =
1,2,...n—1) and to find By and C as functions of the amplitude Ay which is arbi-
trary (The systems (21) and (22) contain 2n equations among the 2n + 1 quantities
A;,Bj(j=1,2,...n—1) and C). To make this eliminations, one can proceed as
follows. The system (21) takes as a value of the index j = 0, then one finds the
A1, B as functions of Ay, By. One puts the values of A, B; in the two equations

(21) for j = 1 and then one has relation between Ay, By and A,, B,, from where
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one finds A,,B; as functions of Ay, By etc. Thus, by eliminating all amplitudes

Aj,Bj(j=1,2,...n—1), one will find the two relations between Ay, By and C

which will give the needed formulas, expressing By, C as known functions of Ay.
The equations (21) are linear and non-homogeneous with respectto A 1,Bjy1.

The determinant D of their coefficients is:

e~ Vit1Xjt eWit1Xj+ 1 1
Dj+1 = yj+le—i)'i+1xi+l _yj+]eiY_f+1Xj+1 =Yj+1 1 —1 = _Zyj+1' (23)
Using the theory of linear equations, one finds
Aje—i)’jx_f+1 —l—Bjeiij”l eWVit1Xj+1
A L _
= Dju1 . . .
Ajyje*lijjur] _ Bjyjelij_/ﬂ _yj-H eVit1Xj+l (24)

2)1+1 ét ()’ j+1 \j)xﬂrl (y it +yJ)A + 76 (}/+1+)/)xj+1 (yj-l,-] _yJ)BJ

and similarly:

_ Vi1 Y *l(}jﬂﬂ’ )xf“A +yJ+1+yJ —i(yjy1—y; )xj+1B (25)
2y]+1 2yj+1

Bji1 =

It is clear that according to (23), at the points where U (x) = E and thus D, =0,

this method cannot be directly applied and one has to make special considerations.

It is convenient now to introduce the vector notations and language, that is

to say that we consider the amplitudes A;, B; as the two components of a vector

d;. Thus the relation (21) connects the components of the vector d; with those of

the vector dj,;. As we know, the transition from vector d; to vector d;, | can be

performed with the help of a matrix of two rows and two columns, by considering
the components of the vectors as a matrix of two lines and one column.

With this language, one can replace the two relations (24) and (25) with the

following:

Aj
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or also:

5j+1:Mjaj, (j:O,1,2,...,n—1) (27)

M being the following matrix:

ei(yj+1—y,-)x,-+1 Yi+1tyj ei(yjﬂ-&-yj)xjﬂ Yi+1—Yj

L 2yjt1 2yj+1
Mj = e 10Ty )X YLV iy =y YY) (28)
2yj+1 2yj41

According to equation (27), the matrix M transforms the vector d; into the
vector d ;1. In the same manner one transforms the vector d; into d;, with the
help of the matrix M, whose difference from M; is that the index j is replaced
with j+ 1. By performing p successive eliminations, one will arrive at the vector
relation:

Gjpp=Mj )M, 1...Mj.d;.

However, if we start the elimination from j = 0 to p = n, one will have:

d, = Ma, (29)

M=MM,_;...MM. (29)

M is a matrix with two lines and two columns, which will be calculated. The
elements my; ...my; of the matrix M being known, the problem of the passage of
particles becomes a simple algebraic problem. The unknown amplitudes By and C
will be given by two linear relations coming from the following vector equation:

‘ C ‘:' mpy mp (30)

mpyy My

Ap
By

We have divided the width of the given barrier and the barrier itself to n
parts. If n is big enough, the widths of the elementary barriers are very small and
the differences between the heights of each two neighboring barriers is also very
small. We denote:

dy
X=X =My, yp—yi= | oo A=Ay, (31
X X

J
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The differences Ay; are fully determined with the assumptions on the function
U (x) in the interval (xox"). One can obtain another form of M;, by replacing in its
terms y;; with y; +Ay;, and x;;; with x; + Ax;. Since the Ay; are small, we keep
only the terms of the first order with respect to Ay; in the elements of the matrix

M ;. For example, the term (m;);; of the matrix M; will be:

o 2y . Ay Ay
iAyxj 5tk 1Ay~x-(1+—,’_)(17,—;’)
(mj)ip=e ""0ND = T ? (32)
inA}'j(lf%) inijf%

= e 2] =e 7,

In the same manner one finds, always stopping on infinitely small quantities of the

first order:
N 2y A (A Ay Ay 2ixgy;
(mJ)IZ = ! TAY)) X +Ax; Ty 2ng iYi )
e (32)
_ Ay 2ixjy; _ XAy
(mj)21 = 2y, € B (mj)n=e g
and the matrix M; can be written as:
. Ay;
elXjijifv; %eZixjyj
2 .
M;= Vi _ (33)
ﬂe—ﬂxjyj eilxj yjifj
2)7j

When Ay are small, the elements of the main diagonal (m;),; and (m;)2, have
values which don’t differ too much from unity, while (m;);, and (m;),; are very
small. Then M; is an almost diagonal matrix, by calling a diagonal matrix the

matrix ||ay9;||, with any a;; and:

1 if =k
O =
0 if itk

In order to evaluate more easily the multiplication of M; in the formula (29') and
to understand clearly the law of the formation of the terms in the multiplication
M, we evaluate the n'" of the almost diagonal matrix A = ||a||(i,k = 1,2):

1+ (0

o 1+ (34)

a-|
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where o is a positive number, very small with respect to unity, a < 1.
If one has two matrices A = ||ay|| and B = ||by||, the elements x; of the

matrix C = AB are given, as we know, by the formula:

cik = Y aibu
1

*

and if n 1s odd, the summation index i varies from O to % in the elements of B".
If ot is a complex number, with small modulus and any phase, then o = re', it is
obvious that one can calculate in similar manner A”, by formally replacing o with
re'® in the elements of A" (the same for B").

We are going to now calculate the matrix M = M,M,,_; ... M, from (29). In
order to simplify the calculations we set for the elements of the matrix M} (33)

(using the index k on the place of the index j):

. . A
XAy = 0y, 2ixgyx = P, 27;:: = Pr; (35)

and M, will be written as:

eak*Pk pkeBk

M, =
k pke_B" e—Otk—P/c7

(36)

where p; enter in the elements of M, as factors in front of the exponential func-
tions and in the exponents of the exponential functions. One can liken the matrix
M; in the form (36) to the matrix B (2.20). py as factors in the exponential in M;
correspond to o in B. It is obvious that the terms of M} will be composed of py,
considered as factors in the exponential functions, exactly the same way as the

terms of B are composed of numbers «, since the p; which enter the exponents

*Translator’s note: Pages 20-21 of the original thesis are missing from the document, therefore
formulas (2.18), (2.19), (2.20), (2.21), appearing after (34) and before (35), are also missing. They
would be referred in the text with their original numeration.
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in the terms of M) remain always in the exponents when one multiplies two ex-
ponents. As a consequence, as formula (2.21) shows, the terms m,(r,s = 1,2) of
the matrix product M will be polynomials with respect to p;. The coefficients of
these polynomials will be the exponential functions which contain the p;. Still
comparing M with B" (2.21) one sees that m;; and m;; will be even polynomials

with respect to pg, and m, and my; are odd polynomials.
We multiply M}, (36) with M}, | according to the law of matrix multiplication.
We find:

Mo Mo — M1 TP =Pk o, o oBrei B et P tBe o ) pBrei—0u—pi
k+147k pk+]e*3k+1+0tkfpk + pke*Bk*GkH*PkH e M 0Pkt Pk o pke*ﬁk+1+ﬁk

(37
Let us introduce notations which will be useful in what follows. Suppose we eval-
uated the product (37) of p successive matrices of the form M. In the elements
of the matrix product we group the terms which contain the factor p;, those with
two factors py etc. . We note with mﬁ’p the sum of the elements of the first row
and the first column of the matrix product, which contains 2i factors p;. (Obvi-
ously 2i < p). One will have three more, analogous to the previous, notations:

2ip  2i+lp  2itlp

my,",my, ' ,m,, . For example, one can express with those notations two ele-

ments of the matrix (37):

X1 TP 1Pk + pk+lpkel3k+1*l3k = m(l)lz + miz

pk+le_ﬁk+l+(xk_pk + pke—Bk—(Xk+1—Pk+1 = mélz
By multiplying (37) with M;_,, we find the element m;; from the first line and the
first column of the product My, M1 Mj:

myy = MM TU PP TP g pkeak+2fpk+2+ﬁk+1*ﬁk

o —Pr+ — — Ol — + —Br .03 2,3
+ Pri2Pir1e —Pr+Bir2 Bk+]+pk+2pk€ ko1 —Phr1 +Prr2 B]‘_mll +m11'
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The first element in the latter sum is m?f which can be written as

2
Z Olg+j — Jj Z pk+j

myp = e/~ =

The element m(1)14 will have the same form, but the sums in the exponent will have

one more term. Always following the complete mathematical induction, which is

immediately applicable to this case, one can see that the element m1 in the matrix

MpflM[,,z .. .M2M1 will be:

p—1 p—1

Z Ol j — Z Pr+j

2J=0 j=0

0.p _
my =

With the help of the notations (35) one obtains the explicit form of m’ 1. Initially,

the factor in the exponents takes the following form:
—1 p—1

Z Olget-j — Z Prrj =1 Z Xkt j AVt j — 2 Z Ay)::] (38)
We divided the interval xox/(the width of the barrier) to n parts. If n is a
very big number, thus each interval is very small, the above sums become definite
integrals. In the formulas which follow, the integrations are indicated with respect
to y, but one can immediately rewrite them with respect to x , since y is a known
function of x (19') and dy = %dx. For the moment, we would not deal with the
question of convergence of the integrals, which will be discussed later on. By
taking the limit p — oo, the right part of the last equation becomes:

p d 'p 'p
Xdy y}kl yy = l‘fy}kl Xdy B lg ;72 (37/)

= i(xpyp —Xiye) =1 [5" g/

J ydx —

thus with the help of (19), m(l)"lp becomes:

(39)

— &) EZUO) iy =) —i[@(xp) —@ ()]

E-U(x,)
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where we have substituted:
y)
i / "ydx = ®(x) (37"
Yk

which is not else but the classical integral of Maupertuis.

If we fix the value of x,, the integral in m(l)’lp is a function of its upper limit,
thus one can consider m(l)1 as a known function of x,, this is to say, of x. When the
transition to the limit is done, we will denote this function with m?| (x) or simply
with m?.

According to (36), one sees that the element m,; of the matrix M, differs from
my; only by the sign of ¢ in the exponent. Taking account of this, we repeat the

reasoning of the formation of m?, in the matrix M. We easily see that m9, differs

from m{, only by the sign of the exponent, namely:

S [P )
g — ik
" (39)
_ 4/ E-U(xx) —i(xpyp—xiyx) +tf ydx

EfU(x,,)e

We mentioned above that the elements m;, and m,; of M, like the elements of the
corresponding matrix B" (2.21) are odd polynomials of p. Let us calculate m!,,
the first term of m,,. Evaluating the products, as above, step by step we find:

p—1 Bers— Z O + Z (2 Z Pr+i

my =Y piije I=j+1 . (40)

j=0
We verify immediately this relation for p = 3. One sees also easily that this rela-
tion is valid for the value p = n if it is correct for p =n— 1. When p — oo, the

sums become integrals and one has:

i [ i[> L pyp dy
l,p(x ) _ 1 pypdy 21xy71£kady+lf)?”xd) s 5P s

m

12 2y 7y (40,)
1 E—U (x;) ei(xk)'k+xp)p f‘k” %ezf ydx—i [*7 ydx
T2\ E-Ux,
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Likewise one can find all the terms in the polynomials which form the ele-
ments of the matrix M. This method, however, is long and painful. We will find the
recurrence formulas which will allow us to write all the terms of the polynomials.

Let us form the product of p matrices:
M pMiyp—1 .. My My =M.

As it was already explained, m?llp is the term of the first row and first column of
this matrix M, term which contains 2i factors p. Let us multiply from the left this
product with the matrix My ,;. Then m%llp 1, the term of the first row and first
column of the matrix product of p + 1 factors, contains 2i factors p. This term
will be, according to the matrix multiplication rule, the sum of the term of the first
row and the first column of the preceding matrix M, which contains 2i factors p,
multiplied by e®+r+1~Pier+1 and of the term of the second line and the first column

of the same matrix M which contains 2i — 1 factors p, multiplied by pi+ pﬂeﬁkﬂ’“.

Explicitly, this product is:

2i,p+1 o1 — Pkt 21, ) 2i—1,
mlllp — %+l Pk+1+1mllll’+pk+p+le[3k+1+lm211 P (41)

The absolutely analogous reasoning to those above will give us three more recur-

rence formulas.

2i+1,p+1 _ o — 2i+1,p 2i,p
mys — oOktpt pk+p+lm12 + pk+p+]eBk+p+lm22

2i+1,p+1 —Bs 2i,p —o — 2i+1,p !
my, = Priprie BHpHm“ e~ %ktp+l Pk+p+1m21 (41 )
2i,p+1 —B, 2i—1,p —o — 2i,p
my, = Pispri€ Bk+p+lm12 e Ck+ptl Pk+p+1m22

With the help of these formulas we can write explicitly the terms of the matrix M.

Let us start with mﬁ’p ) According to (41), this term is expressed with mﬁ’p , thus

the upper right index is decreased with one. If one expresses the term mﬁ”’ ~! with
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the help of the same formulas (41), one finds:

2i,p+1

Beoyir. 2i—1.p
myy" " = Priprre "Ny,

2i—1,p—1

+ eak+p+l “Pript1 (pk+peﬁk+pm21 + eak+p7pk+p m%l'lap—l ) )

We can now replace m:;”~' of the last equality with m:7”~> using (41), the latter
term with mllH »=3 and so on. We arrive this way at the term m?'l % The right side
of (41) will be a sum with respect to p. One finds easily, taking into account the
formation law of the last equality:

p+1
Bt Y, (Orj—Prsj)
2[ p+

P
2i—1,p j=I+1

myy = pk+p+leBk+P+lm21 + Z Pr+i1e / 2]

1=2i

—1,1

We replace in the last formula p, o, 3 with their values from (35) and we take
the limit p — oo. The first term of the right side of the last equality cannot be
conveniently presented as a term of the sum. On can ignore it, since it tends to

zero at the same time as p. The term mzz’

of the sum depends of the index [, thus it
is a function of yy, this is to say of y, when the intervals tend to zero. This function

will be noted as m?/ (y). One finds for m?’lp i taking into account (41) and (41'):

: Y d v [V yp dy .
m%ll(yp) = 1/" > ) pédnf%-[rme%lf]()’)

(42)

Yp dy szy-Hf kz‘;dn 2i— 1( )
2\/)17, my V)

where & and 1 replace the variables x and y. With the help of (37") and (37”) one
can put m? (y,) in the form:
IO I [ S, (42)
VI Iwe Y
The term m?; (y,) will be a known function of y, if one knows m%"l_l as a function
of y.
Let us take the second formula (41’). If we apply the same formula to the

term mi"l“”’ on the right side, we decrease successively the index p so that for the
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2i+1,p+1

term mj; , one obtains the following formula:
p+1
2itlptl _ N e :; | (ke = i) 2i,0
My, Z Pr+i€ = my -
1=2i
and by taking the limit:

Yp
| —dixy—i / Edn
; Yr e Yy
R
p J Yk

In equation (42) one can replace mé'fz(y) with the same term, taken from (43).

One finds:

mi} (y)dy. (43)

Yy
s [
1 Y dy 21xy+1/ &dn /y . 1)1 s
2 Yp \/y Vi \/)Tl

One can continue the same process on mj! , in order to decrease its upper right

2i

myy(vp) = mi 2 (y1)dy, (44)

index to zero, this is to say, to the term m{, which is known from (39). The final

form of m? will be:

21xy+1/ d ‘ . ,
mll())p) 221 /yp dx &-’ n y@e*Zleylfz ilp&-dﬂ /)l
Yp Yk \/5 Vi \/)T] "

Y22 dyo g TSR S

0
S —1 m .
Vi Voi—1 — 1 11(02i-1)

(one should not confuse the index of the term i with the imaginary unit 7).

(45)

It is clear that in the last formula, the variables with indexes which replace

formally the variables x and y, and the integrals are functions of their upper limits.

The last formula expresses m? (y) as a known function of y with the help of

2i integrations. Exactly the same way, one can find the formulas of the three other

terms:
Yo d . - p Y d _9j _i[p
2i+1 Y Dixy+i [P Ed Y1 -2 P Ed
mis (yp) = 22i+7llvi+1 G piwytifrdn [7 O =2y =i [ &y /

T Sy ﬁ i VY1

Yiet dyj oixjy+[7Edn; o

/ J.e JYiTly; Si jm22(yj)

i o Y (46)

p dy o2 [Ed Vi dy o2y s

1 iy n; 0

m21 (yp) = 22i+1 ,i+l e j ‘: n\/y / J = Y (y])
k Yk

Yk

i)

o) =y [ dy ke [ Py o reen i
2 }k Vi \/y Yk J Vi \/7
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where one has to take for the index j of the last integral of the terms (46) j =2i— 1.
One can obtain another form of those formulas, like (42'), by replacing the integral
[*&dn according to (37') and (37") with ®(x).

As we have said the four elements of the matrix M are polynomials of p.
These polynomials have finite number of terms when the interval xox" is divided
on n parts (n — finite). But if n — oo, the elements of the matrix become infinite
series whose terms can be calculated according to the formulas below. The four

terms of M are:

my(x) =Y m(x), miy =Y mpy,
i=0 i=0 (47)
my =Y myi, my =Y m3h
i=0 i=0

They are known functions of y, or of x, since y is a known function of x.

The problem which we had posed in the beginning of this study was to find
the proportion between the reflected particles and the transmitted particles by the
barrier. This is equivalent to finding the amplitude By of the reflected wave and C
— that of the transmitted wave according to formula (30). Since the matrix M is

known, the problem is solved in principle.

2.2 Convergence of the series (47)

We have to now discuss the question of convergence of the series my1,...,my)
(47). All the integrals which enter in the terms (45) and (46) contain in the de-
nominator y = \/2m(E —U(x)). Thus the functions under the integrals become
infinite for these values of x for which £ = U, since y = 0. We consider firstly
the case where the right side of the equation U = E does not cut trough the bar-
rier between its end points xox’ (y does not vanish between x, and x’). We have
seen that the matrix M; (33) or M; (36) is almost diagonal, this is to say that the

absolute values of the main diagonal elements of M are almost unity, and that the
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absolute values of the other elements are very small. Since the function y(x) is
continuous and bounded between x and x’, one can find a positive number o such
that 1 4+ o will be bigger than the modules of the elements of the main diagonal
of all the matrices My (k= 1,2,...,n), and a bigger than the module of the two

other elements of the matrices My(k = 1,2,...,n). Thus the matrix:

Ma:‘ l+o0 o ‘

o I+

is the “dominant” matrix of M. My is identical to A in (34). To the matrix M,
product of n matrices, will correspond the n'™" power of My, thus M”.. We already

know the elements of that matrix My = A" according to (2.19). We can write:
ke ok L& ok ke ok
(@) =1+Y 27'Col =1+ 5} 2" Cor
k=1 =1
1

1
5 51

n
(1+ Y 2Clou) = S [1+ (1+20)"]
k=0

With the assumptions made below for the function f(x), when the number n of
the division of the interval xox’ tends to infinity, the main diagonal elements of M
tend to zero. Therefore o should tend to zero simultaneously with % If we assume
that o0 = %, where m is a finite positive number, we will find for the limit value of

(an)lli

; 1 n 1 m
lim (a,); = lim > [1+(1+20)4] = E(1+e2 )

n—soo

which is finite. For the term (a, )12 of M one finds the same with the help of (2.19):

. 1
lim (a,)12 = 5(—1 +e*m).

n—oo

Since (a,)11 = (ay)22 and (a,)12 = (a,)21 all the elements of A” are finite. As a
consequence, the sums (45) and (46) which have smaller values than the values

(@n)11,-- -, (an)2 are also finite.
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Now let us consider the case where y(x) vanishes in the interval xox’. Ob-
viously the line E = U crosses the barrier at two points, or, in general, in even
number of points. Let us assume they are two.

The two terms m{, and m9, (39'), in which we have already performed an

integration, contain ,/y in the denominator and they will be discontinuous for

[
wo Y :\/% (37'), which

(ST

y = 0. This discontinuity comes from the factor e

becomes indeterminate for y, = 0.

A ARt ) € AP 2z

Figure 2.

This simply shows that the method of division of the barrier on a too big
number of elementary barriers of rectangular shape is not applicable around the
points P(x;) and Q(x») (Fig.2), where the line U = E crosses the barrier. However,
we can always cut the barriers on two small barriers which contain the points P and
Q and which extend from the point M; (x; —€) to the point N; (x; +¢€) and from the
point M;(x; — €) to the point N, (x, + €) respectively (€ is a small positive number).
The given barrier is thus divided to five successive barriers. The formulas (39) and
(39’) are surely valid for the three barriers from x, to x; — €, from x| + € to x, + €
and from x, + € to x'.

We connect the points M|N; and M,N, with rectilinear segments. The two

small dashed domains form two barriers where the curve U is a straight line. The
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passage of particles across those two barriers can be calculated as for a rectilinear
barrier (triangular) with the help of the functions of Bessel J 1 and J_ 1 without
having the discontinuity at the points P and Q anymore. We have thus five succes-
sive barriers on the place of the given barrier and the solution of equation (18) in
each of them is known. The problem is theoretically solved, but the calculations
will be complicated. For the moment we will omit them, since our problem is
to find the reflected wave and the transmitted wave, and we are to find them in
another way.

The formulas (37) and (37") show that the discontinuity in the terms m?] and
m), comes from those members of the second sum, for which yy ; = 0. When one
goes from M) to N; (fig.2), y varies from a real value to a purely imaginary value
passing trough zero. Therefore the integration of [ % is performed along contour
M, ON in the complex plane &+ in (M| is on OE and N, is on On). If we avoid the
origin O with the help of a quarter-circle C with center O and radius €, one has to

calculate [ % along the contour following M;€; C; i€, N:

N1 g e d d iy | g
L
MY gy Y cy i€ y

yMl 2 yMl

since Ig yn, =1g | yn, | +i5 according to the definition of the logarithm of complex

variable. The same reasoning is applicable between N, and M, where y becomes

/ypdy :lgyl
w Y Yk

If the line E = U crosses the barrier at even number of points between (y)

real again and one has:

and (y,), the preceding example is applied without change, and the integral | %
will be given with the preceding formulas.

The conclusion that one can make from the preceding results is the following:
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the integral [ “i—’ has a finite value, because there is a kind of compensation of
the discontinuity by the function under the integral. In analogous way one can
show that all the integrals in the terms of the matrix M are finite, despite the
functions under the integrals being discontinuous at even number of points. One
can then always use the expressions m?l and mgz (39) and (39) and the others
my(i,k = 1,2) (45) and (46) for the usual calculations of the passage of particles
trough barrier of any kind if the potential function does not have singular points in
the interval (xox"). We will come back to that point later.

Note. — The problem of escape of particles from a potential well [7] is very
analogous to the problem of passage of particles through a potential barrier. If
the shape of the well is arbitrary, one can decompose it to rectangular barriers and
make the eliminations of the arbitrary amplitudes with the help of almost diagonal
matrices, as we have already done it for a potential barrier. We would not deal
with this problem here, since in the following chapter we will give the solutions
of the Schrodinger equation, and with it, the principal difficulty of the problem of

escape of particles from a potential well is removed.
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CHAPTER 3

3.1 Solution of the Schrodinger equation in the case of one variable [4]

We found the formulas which give the proportion of the reflected and the
transmitted particles, when they fall on a potential barrier. This was the general
problem of potential barriers. But those same formulas will serve us also to find
one important result: the solution of the wave equation. In effect, it is easy to
understand that the formulas determining the reflected and the transmitted waves
must contain in some way the solution of the wave equation.

The method we used consisted of decomposing a barrier of any form to small
elementary rectangular barriers. For each of them, the solution of the wave equa-
tion is known: this is a linear combination of two plane waves. When x varies for

example from x,, to x,, the solution of the equation is, according to [8]:
W, (x) =A,e " + B e (48)

But if the variations of x are bigger, the wave function ¥, (x) will not satisfy the
wave equation anymore. In this moment we have to take into account that A, and
B, cannot be considered as constants anymore. They will be functions of x. With
successive eliminations we have expressed the amplitudes A,, B, as functions of

the amplitudes Ay, By, in the first elementary barrier (xox;) with the formula:

Ay
B,

Ay

:M(xlvxp) B,

s =M,M, \...M)M,

r
p

The elements of the matrix M, given by (46) and (47), are known functions of x,
since the upper limit in the integrals in (46) is y,, this is to say, a function of x,,.
But x, can take all values between x, and x’. Consequently, if one puts in (48)

the values of A, and B, as functions of x, one will express ‘¥, as a function of x,
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where x varies in the whole interval xox’. By taking A, B, of the last relation, one

has as solution of the wave equation (5):
W(x) = [myy(x)e™ ™ +my (x)e™ A + [myp(x)e” > 4 may (x)e™™]By. (49)

Here one can consider the quantities A; and B; to be arbitrary and W¥(x) will de-
pend on two arbitrary parameters. ¥(x) (49) is then the general integral of the
wave equation (5).

When one applies this formula to the problem of barriers and when one writes
down the four conditions of continuity which connect the parameters A, B; with
the amplitudes Ag, By, C, there will be only one arbitrary parameter: the amplitude
Ay of the incident wave, as we have seen it for the rectangular barrier.

Let us retain now in (49) only the terms m?, and m9, of M. ¥(x) will take the
form:

Y(x) = m?l (x)e_iyxAl —f—mgz(x)eiyxBl

By replacing m!, and m), with their expressions (39) and (39') and by setting

x, = x and x; = x1, one will have:

lp(x) — A /lz—_lllj((x;)) e—ixlyl—if;l \/2m(E—U(x))dx
1B, /Ié—_l{]((x):))eixlyﬁif:l v/ 2m(E—U (x))dx

The comparison of (50) with (10) (p.3) gives immediately that each one of the two

(50)

terms of W(x) (50) is identical up to a numerical factor, to one of the functions (10)
which one finds following the method of Brillouin-Wentzel, in the most common
case of its application. This was, as we know, the case where the approximation

of geometrical optics is valid.
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3.2 Verification that the function ¥'(x) (49) satisfies the wave equation

We have to show now, in a more direct manner, that the function ¥ (49)
satisfies the equation (18). But if we want to find directly the second derivative of
¥ by differentiation of (50), that will be very difficult, since the terms m1,...,my)
(47) are complicated functions of x.

One can give some general reasons why ¥ (49) is the solution of (18). First,
we have replaced the potential curve by a broken line such that the surface between
the latter and the axis OX tends to the surface of the barrier. Since the broken line
tends to the potential curve, in the limit when n — oo, one has to expect that the
so-found solution will tend to the exact solution (18). A doubt may appear on first
glance, because the first derivatives of the function which represents the broken
line are discontinuous for n values of x. Nevertheless, this does not influence the
result, since the wave-function W and its derivatives are required to be continuous
at the ends of the neighboring elementary barriers.

From another side, ¥ was constructed in such way that in each interval
(xp,Xp41), its variation will be like this of the exponential function. In this in-
terval ¥ obviously satisfies the equation, but only if we consider the potential as a
constant. The function ¥ is then composed of little arcs, glued one to another in a
way that W and its derivative will be continuous. Since this is true for any division
of the interval xox/, in the limit the function W satisfies the equation for each value
of x. We have to then confirm this with calculations. But to find more directly that
the function W satisfies equation (18), we will calculate its second derivative. For
a value x, of x one will have the value of ”57%’ if one knows the values of ¥ for
three points of x: xp,x,1,Xp12, this is to say: W(x,), ¥(xp+1), ¥(xp12). We have

to find the two first differences:

W (xps2) =¥ (xps1) and W (xps1) —¥(xp)
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and their difference divided by Axf,, (Ax, = xp+1 —x,) will give a ratio whose limit
will be the value of ‘57? for x = x,. Or also one can calculate this value from the

known formula:

X

PPN\ Ppen) = 2% (xpe) + P ()
N Ax,—0 Ax[%

Without limiting the generality, we can consider that the points of division of the

interval xox" are equidistant and one can write:
Xp+1 = Xp +Ax,, Xpy2 = Xp +2Ax),.
According to formula (19), one can write for the function ¥ in the interval x,x,1:
W(x) =Ape "+ B,e"r". (2)

Let us substitute in (2) x = x,, 11 = x, +Ax, and then to expand the exponential

functions, conserving the infinitesimals up to second order. We find:
P(x,+Ax,) = Ape % (1 —iy,Ax, — %y?,Ax?,) + Ber (1 +iypAx, — %yf,Ax]z,). (52)
One will have for the values of W in the interval (x| ,xp+2):
W(x) =Apr1e "+ B, (53)
This formula will give for the value ¥(x,,):

lP()Cp+2) :Ap+1e_lyp+|xp+2 +Bp+lelyp+lxp+2. (53/)

The equations (24) and (25) express the A,1,B,; as functions of A,,B,. One

will find, for example, for A, in (24), by substituting in it:

Xpp1 = Xp+Ax, and Vo1 =Yp +Ay,:

Memm (xp +AX”)A,, + iei(z}’p*Aﬁ)("p +Axp)Bp

Apr1 =
r Z(Yp +Ayp) 2(yp+A)’p)
A Avp\ 7L A Avp\ 7L ,
= (1 =+ Tyﬁ) (] + ﬂ) e’A)ja(x1)+Ax17)Ap+TW (1 + &) el(2y11+A}l))(xl)+Ale>Bp.
Yp Yp Yp Yp
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Let us expand the expressions in the last formula, keeping the terms up to second
order on Ax, and Ay,. One finds after simple but little long calculations:

2A2 ; 2 2
x,Ay;, B ixpAy, %
2 2yp 2)’,29

A
Api1 = Ay (1 +ixyAy, — gy” +iAx, Ay, —
p

. Ay ipry2 Ay?
+B,e*rr | =2 4 jAx,Ay, + La——
b ( 2y, PP 2y, 2y2

Naturally, if one keeps in the last formula only the terms of first order on Ax, and

Ay, the coefficients of A, and B, will be reduced to terms from the first row of

the matrix M; (33).
Let us calculate now the first term of the right side of (53') by substituting in
ity,i1 =yp+Ay,,Xp12 = X, +2Ax, and A, according to the last formula. By

performing operations similar to the preceding ones, one finds:

. . A Ay
—i(yp+Ayp) (xp+24Ax,) _ —ix,yp Yp . 24,2 P
Aerle i(y, }I)(Xp ») 7Ape Xpyy 1_27_21)}[7Axﬁ_2ypmp+272
yp yp
2
+Bpeixhyh % _ % .
2yp 2y§

Starting from formula (25) for B, just like we did above, we calculate the

second member of (52):

2
i(yp+Ay,) (xp+Ax,) :Apefixpyp <Ayp _ AyP)

B e
p+1 2 2
Yp y127

ix,y Ay Ay, 202
+ By | 1 — =2 12y, Ax, + —£ —2y2 A2 | .
p 2y, PP Zy%, pp

Finally, the preceding formulas allow us to find for ¥(x,,)(53'):

W (xpi2) = W(x, +24Ax,) = Ape ™ (1 = 2iy,Ax, — 2y  Ax ) ,

(53%)
+B,e"r (14 2iy,Ax, — 22 Ax?).

Let us substitute in (51) the value of ¥(x,,) from (53"), ¥(x, + Ax,) from (52)

and ¥(x,) from (2). We find easily:

v — lim A,,["-’Wp (7yﬁAxi)+B,,e"~"l"‘l’ (7y?,Axf,)
dx? - Axp—0 Ax%
Xp

! (54)
= 3} (A7 + By = (),
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As a consequence, the function W(x) satisfies the wave equation (18).

3.3 Theorem on the coefficients of transparency and their eigenvalues

The considerations done above were valid for values of x within a bounded
interval xox’. The series we found are convergent, if the function U (x) is finite. It
is not necessary for the function U’(x) = 4% to be continuous in the interval xox’,
as long as it is bounded. U (x) may me then composed of finite number of arcs of
different curves and the solution of the wave equation will always be expressed by
(49).

Let us now take the limit xy — —oo,x’ — +oo. The function ¥(x) (49) still
satisfies the equation (18) but it will be generally infinite for x = d-co. If the func-
tion U (x) tends to zero for x — +oo, the wave function remains finite for x = +eo
. One can show this just like we did for the matrix M (29'), finding a dominant
matrix. But if U(x) behaves differently at infinity, the wave function ¥ (49) will
not be bounded. Nevertheless, in the Wave Mechanics one look for functions,
which are null at infinity, which can be realized for certain values of the energy
E. Obviously, it is not easy to find in the general case the eigenvalues of the en-
ergy from equation (49). We show a method permitting us to find in principle the
eigenvalues and with its help we find approximate eigenvalues.

If one recalls formula (12) and (16) (Ch. 1) which give the coefficients of
transmission respectively for a rectangular barrier and for a barrier of the harmonic
oscillator type, one sees that the coefficient 7', which measures the transparency
of the barrier for incident particles, is a function of the energy E. This function
admits successive maximums for a series of values of E, which are exactly the
eigenvalues of the wave equation. We will see that this property remains true for
any shape of the barrier.

Let us take a barrier defined by a potential function U (x), between two points
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M, and M, with abscissa x; = —[ and x, = [. In this interval the wave equation
will be:
&Y  8t’m

Tt [E—U(x)|¥=0. (55)

Let us suppose that to the left of M and to the right of M;, the potential is zero
and that the incident wave propagate in the direction OX. To the left of M, the
total wave W; (x) will be a sum of the incident wave and of the reflected wave with

corresponding amplitudes A and B. On can write:
¥ (x) = Ae & 4 B, k= "=v2mE (56)
The transmitted wave Wj to the right of M, will be of the form:
W (x) = Fe'*, (57)

In the region M;M,, the general solution of the wave equation can be represented

as a linear combination of two independent solutions, the waves ¢(x) and (x):
¥, (x) = Co(x) + Dy (x) (58)

On the two ends of the barrier one has to write the two groups of equations,
expressing the continuity of the functions and their derivatives:

Ae*l  Be= K = Co(—1) + Dy(—I)
(59)

—ikAe* + ikBe ™M = Co/e(—1) + Dy/(—1)

CO(1)+Dy(l) = Fe ™
O(1) +Dx(1) = Fe (©0)

Co' (1) +Dy'(I) = —ikFe ™
The problem consists of determining the amplitude of the reflected wave B
and that of the transmitted wave F', in order to form the coefficient of reflection R

and of transmission 7.
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To simplify the writing we introduce the following notations:

¢(—l) :q)*a (I)/(—l) :q)/—a (I)(l) :¢+7 q)/(l) :q)ii-
x(-D=x-, xXCD=x, xO)=x, AD=xA,

Let us form the determinant A(—!) from the coefficients C and D of (59):

O I A LAY
A(=l)=A_= o % ’—q)—X 0" o

and similarly A(/) = A from (60).
From (68) one easily gets:
C = a-[Ae™ (X" +iky-) +Be ™ (x —iky-)]
D= L [-AH(@ +iko.) +Be (ko — o' )]

Equations (60) will give for the same quantities:

C=Ee2 (), +iky)

D= ~LER (0] +iky)

(61)

(62)

(63)

(64)

By making equal the values of C and D according to (63) and (64), one finds the

equations:
Ape ™YL —iky—)B—A_e ™ (y, +iky . )F = —Aye™ (X +iky-)A
Are M (iko_ — ¢ )B—A_e M (@), + ik, )F = Ao (¢ +iko_)A
The determinant d of the coefficients B and F of (65) is then:
{d — ALA_e MM — ik ) (8L, + ik )+ (kO — 01) (. + ik )]

and one will have for the values of B and F, from (65):

{B = SR A= (L 4 ik ) () + k) + (0L + k) (X + ik )]-
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(65)

(66)

(67)



{F = EPAI — ik ) (0 ko) + (ko —¢ ) (X +iky )] (69)
We will now want to evaluate the orders of magnitude of | B | and | F | depending
of the values of the energy E of the incident particles. Let us consider the case
where [ is very big, this is to say, the base of the barrier if very long. Thus, to
calculate B and F from (67) and (68), we will need only the asymptotic values of
¢ and Y.

Since the wave equation (55) coincides with its conjugated one, it can be
shown easily [3], that the determinant A (62) is constant for every value of x,
where the solutions ¢ and Y are independent. But it is easy to prove this property
directly. In effect, let us replace in equation (55) successively the functions % and
0. We multiply the first of this equations by 0, the second by ¥ and we subtract

them. One will have:

d d
0=0dx" —x¢" = a(d)x’ —0'x) = i (69)

As a consequence, the determinant A is constant:

A= oy —x¢" = ox <)>Cc_(:>/> =" (70)

We can now consider that the notations (61) represent the asymptotic values of
0 and 7y for x — —oo and x — +oo respectively. The equality (70) shows that the
asymptotic values ¢_ and y_ for example, cannot vanish simultaneously, since A_
will be null in the that case. ¢_ and ) cannot be also infinitely big simultaneously,
since according to (70) the expression in the parentheses should tend to zero and
one gets 1gy = 1gd, thus the asymptotic values ¢_ and x_ will not be independent.
On the other side, ¢_ and y— can be finite simultaneously, which happens when the
wave equation has a known spectrum. The preceding reasoning can be repeated

without change for ¢, and ¥ ;.
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Taking into account (70) and (66), one can write for F' (68):

P |=|a (. — ik ) (k- +0") + (X + ikx— ) (ikd_ — ) l | @byt ash
(0 — iky—) (kO +0) + (o + ik ) (ikd— — ¢') arb, +dybs |’
(71

where one replaces, in order to shorten the writing, the expressions in the paren-
theses in the numerator with the letters a;, by, a», by, respectively, and the same for
the denominator.

Let us suppose that the wave equation has a discrete spectrum and let us
consider the case, where the energy E is not equal to one of its eigenvalues. Taking
into account the preceding reasoning, one can ask, without losing the generality:

0 oo, O s, -0, x50
(72)

¢, —0, ¢’ —0, Xt —> ©o, X, — oo
Using (71), one sees that the expressions a; and a, are of the same order of mag-
nitude, like b; and b, from the other side, and in the numerator we keep only the
expression ayby which is of the order of the expression a;b,. It also follows from
the formulas (72) that the term a5} in the denominator is infinitely small com-
pared to the term a,b, and we will keep only the latter. Finally, the approximate

value of | F | (71) will be:

(73)

X —iky—
‘A X +ikx+

_ A ab
alb’l

o | A =ik ) (iko_+6" )
{’ F| ‘A A
From (72), this is an extremely small value, since the numerator is infinitely small
and the denominator is infinitely big.

Let us now work in the case, where E is equal to one of the eigenvalues of

equation (55). If E is not a double eigenvalue, one of the functions, for example
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0, will be an eigenfunction. One will now have, on the place of (72):

(T)*_>0’ (I)/—_>0a X- — oo, X/_>°°
(72

(I)Jr_}()? (T)l-s-_>07 X+_>°°7 X{i-_>°°

where the bar above the functions is to distinguish their values from those in (72).
But since the values (72'), like (72) are asymptotic values of the solutions of equa-

tion (55), we must have that ¢_ is of the order of _, ¢_ ~ _, and similarly:
Oy ~ O 0 ~ O ~ A (72"

Let us now recall formula (71). There also, the terms a;b; and a;b, are of the

same order, and one will have, keeping only the first one:

E | (X —ikx)(iko-+6") | _ ab, 73/

{‘F | ’A(XL—ik;’(,)(ik¢++¢’+)+(x’++ik2+)(ik¢,—¢’+) —‘ ab 6 (73)
With the help of (72") and (72”) one can write:

fio A @k )izt 74

{’F | ‘A(¢’+—ik¢+)(¢i+ik¢f)+(7c’++ikfc+)(ikfcf—)’ci) : 74

The numerator of (74) and of (73) are of the same order, while the denominator
of (73) is infinitely big compared to the two terms of the denominator of (74), like
formulas (72) show. Thus the value of F (73) is infinitely small compared to the

value of F (74), which can be a finite number, of the order of unity. One can,

|F|2

as consequence, formulate the theorem: The coefficient of transmission T = e

which characterizes the transparency of the barrier, has successive maximums for
these values of the energy E, which are eigenvalues of equation (55).This is a
resonance phenomenon.

The same study on the coefficients B (67), gives that B is of the order of unity,

since its numerator and its denominator are of the same order. But because of the

BP+F[?
A2

sumR+T = — 1, the coefficient R will have minimums for these values of
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E, which are equal to the eigenvalues of equation (55). However, these minimums
are much less expressed than the maximums of 7.

Let us now suppose that equation (55) has a known spectrum. Then for all
the values of E in the interval, finite or infinite, (55) will have at least one solution,
whose asymptotic values are finite. Since the determinant A (62) is constant, one
can have only two possibilities: either the asymptotic values ¢_,x- and ¢4, %+
are finite simultaneously, or ¢_, ¢, are zero and )_,)+ are infinite. In the two
cases, by making the same consideration as above, one finds for F (68) and thus
for T, finite values. If the coefficient T, which is a function of £ and of [, allows
maximums and minimums with respect to E, those maximums and minimums are
of the same order of magnitude, for all the fixed values of /. On the other side,
if (55) has a discrete spectrum, and if / has a fixed value which is very big, the
maximums of 7 with respect to E have finite values, while their minimums are
very small and they tend to zero when / tends to infinity.

The property stated above can then serve us to search for eigenvalues of the
wave equation. — For this, one has to form the coefficient of transparency T for a
barrier with very long base and to search for the roots Ej of the equation %T =0.
If the value of T is finite for a value of E between two arbitrary roots, E; and E;,
those roots belong to a discrete spectrum and vice versa.

Since in the applications one uses an approximate function, one will find
approximate values for Ej.

By substituting the so found values of E; in (49), one will find the eigenfunc-
tions . If the base (xox’) of our barrier increases infinitely, one has to expect that
the W, will be finite at finite distances from the origin O and very small at infinity.
The other functions W (49) which are not eigenfunctions should, on the contrary,

flatten on the axis OX and become null when x; — —oo and X’ — +o0. One will
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have a phenomenon analogous to the paradox of the harmonic oscillator [7].

The function (50), with whose help we often performed the approximate cal-
culations, represents a first approximation of the wave function, and one has to
take into account the degree of approximation which one is limited to by this form
of the wave function. From (50) it can be seen that the exponents in the members
of ¥(x) contain the integral of Maupertuis (37”). This indicates already that the
function (50) should be valid in the approximation of geometrical optics. We have
also seen that the two members of (50) coincide, up to a numerical factor, with the
function (10) (p.3), given by the method of Brillouin-Wentzel. The appearance of
this last function shows that the approximation of geometrical optics is realized,
this-is-to-say that the condition %% < 1 exists.

Let us also compare directly the approximate formula (50) with the exact
formula (49). To form the function (50) we retained only the terms m?, and m9, of
the matrix M (29'). Recalling formulas (46) and (47), one sees that all the terms
in (47) contain integrations with respect to y, or with respect to x, since dy = y'dx.
If the barrier is rectangular, the potential is constant, dy = 0, thus all the integrals
are null. The only terms of the matrix M (29’) which will be different of zero are
m?, and m9, for which one will have: m?, = m9, = 1, as equations (39) and (39’)
show. The matrix M will become the unity matrix, and consequently, the incident
plane wave W, will remain monochromatic after its entrance in the barrier. It
is thus clear that if the potential U (x) varies slowly, the terms m{; and m9, will
dominate among all the mqg (o, = 1,2) from equations (47). Let us take the
term m}, (40') and let us substitute in the integral dy = y'dx. One sees easily that
this term can be ignored compared to m?, and m9,, if ’;/ < 1, or also %% <1
(since y is proportional to n), this is to say, if the index of refraction n varies

slowly. Obviously it is more difficult to express using this method, than using the
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Brillouin-Wentzel method, the exact condition which shows the case where the
terms m1, and m}, are to be ignored compared to m?, and m9,, since m{,,m9, and
ml, m}, are not connected with a simple relation.

In the particular potential barrier problems, one uses often the form (10) (p.3)
of the wave function given by the Brillouin-Wentzel method. We have seen (p.3)
that this formula is not surely applicable in the neighborhood of the points P(x),
for which E = U(x). Still this form of ¥, applied to calculations of the coef-
ficients of reflection and transmission, always gives the phenomenon in general,
even though the barrier is cut at least at two points by the relation U = E. But after
the considerations we did (p.25) on the terms m{, and m), for this case, it follows
that the use of the function (10) or similarly of the function (50) is legitimate for

all the usual calculations on potential barriers.

3.4 Singular points of ¥(x). Turning points

We have seen that the points P(x;) and Q(x;) at which the relation U = E
cuts the barrier, represent singular points of the wave function ¥ (49). When we
apply (49) to the calculation of the coefficients of reflection R and the coefficient
of transmission 7, this discontinuity does not bother us at all, as we have seen.
But the function (49), such as it is, does not correspond to the definition of the
wave function in the interval (xox’), since it becomes infinite at the points P and
Q. We have to now work out this difficulty.

The existence of discontinuity of the function W(x) at the points P and Q
proves that in a neighborhood of the points P and Q, one cannot decompose the
given barrier to elementary rectangular barriers. The wave equation shows, ac-
tually, that the wave function in a domain of the constant potential U < E, but
very close to E (U ~ E), is a periodic function varying slowly. For the limit case,
E = U, it becomes a linear function of x and it is not anymore, strictly speaking
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a periodic function. The elementary rectangular barrier which contains the point
P must then be replaced by another elementary barrier, formed by a curved arc,
which will not be too different from the corresponding arc of the potential curve
(the arc M 1N, on Fig. 2 2). We know [9] that the exact shape of the potential curve
U around the edges of a barrier occurs much in the formulas of transparency of
the barriers, if the energy E of the plane wave is close to the values of U on the
edges of the barrier.

For this reason, we can replace the arc M N; (fig. 2) by a rectilinear segment
M N, and make the calculations of the barrier with this elementary barrier on the
place of the rectangular barrier. But if the potential U is a linear function of x, the
solution of the wave equation is given by the Bessel functions J% and L%, and the
calculations become more complicated. We will omit them for the moment and
we will search for an approximate solution, valid in the neighborhood of P and Q,
and then we will find the exact solution valid around P and Q.

Since at the points P and Q one has £ = U, the wave equation (18) shows that

>y

%= = 0, this-is-to-say the function ¥ has two inflexion points P(x;) and Q(x»),

and one can represent the function very approximately in the region (x; —€,x; +€)
(¢ is a small positive finite number) with the linear function W(x) = ax+b. The
decomposition of the barrier to rectangular barriers is valid outside of the domain
(x1 — €,x; +€). One has to write on the edges of the rectilinear barrier, with base
(x1 —€,x; +¢€), the conditions of continuity and to eliminate the quantities a and b.
This way, the amplitudes A,, B, which we find by decomposing the given barrier
outside the interval (x; —€,x; +¢€) and (x, — €,x; + €), are related to each other
by the intermediary function ax + b, where a and b are already known. The same
operation should be performed at the point x,.

The wave function ¥(x) constructed with the help of its transformation ma-
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trices and the matrix M is known at the points P and Q, but it is not represented
by the same analytical expression in the whole domain xox’ in which the barrier
extends. It is linear in the regions (x; —€,x; +€) and (x; —€,x, +€) and it is given

by (49) in the rest of the interval (xox’).

3.5 A second method of solving the wave equation

Another difficulty arises at the points which are singular for the potential.
We assume that those points are poles. Let the point O be a pole of order p of the
function U (x). Around the point O the decomposition of the barrier to elementary
barriers is fictitious. One can see that if we make that decomposition near the point
O, this point will be a singular point for the function ¥(x) (49), which we have
learned to construct with the help of elementary barriers. We have to then change
the method in neighborhood of O.

We will sketch another method to solve the equation (18). With this method,
we will find the solution which remains finite in neighborhood of O.

The general integral of (18) contains two arbitrary constants. As a conse-
quence, trough any two given points passes an integral curve, or also, trough each
given point passes an integral curve, whose tangent at the point has some given
angle with the axis OX. Let Py(xo) be the given point. The function ¥ and its
derivative ¥’ take arbitrary values W, and W, at P,. For an increment Axy of x,

one will find the values ¥, and ¥ of ¥ and ¥’ given by the formulas:

W) = W)+ AxgW)
(75)

W = W)+ AP = W) — foo
In the last formula we replaced W) by —yo¥y and set y3 = f;. ) and P are

linear functions of ¥, and ¥}, and one can replace (75) with the vector relation:

"Pl ¥ _‘ 1 Ax || P

=N,
¥ o gy —foAxg 1 || ¥

(76)
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where Ny is an almost diagonal matrix. With the same relations one finds the
values:

¥, = ‘P(xo + ZAX()) and lP/Z =¥ (xo + ZA)C())

as functions of ¥, and ¥}. Eliminating the quantities ¥; and ¥} one will have
a relation between W,, ¥, and Wy, V. Like with the quantities A ;, B (p.13) after

successive eliminations of W, ‘P}c, one will end with the following formula:

¥, Y,
=N (77)
HEE
where :
L 1 1 Ax;
N=]|N,= 78
,-Ul I:Il Ay (78)

is the transformation matrix. Since the matrix N; resembles to the matrix B (??),
the product N will be formed like the matrix product M (29'). The Ax; from N;
correspond to the factors p; in the elements of M; (33). Therefore, the four ele-
ments ngg (0, = 1,2) of N will be the sums whose members contain the factors
Ax;, Ax;Axy, . ... In the element ny; of the matrix N, product of p matrices N; we
indicate with nflf’p the term which is the sum of the terms containing 2k factors Ax.

One finds (as in (41) and (41)) the recurrence formulas:

p
2k,p 2k,p—1

2k—1,p—1
nyt=nyt oy Axy
2k Uk+lp—1 | 2Ukp—1
+1,p l’l +1,p— +n P Ax
np ny P
(79)
Zhilp _ _ 2kl Zeip-1
ny = fpAxp+n
d%p _ 2%k—1p-1 2kp-1
ny'' = —np, fpAxp,+n
Utlp  2k+lp 2k 2%,
where ny, "7 ny\ P n,” are defined the same way as the element n3,”. On the

equations (79) one can perform the same operations which follow the equations

(41) and one can represent the nqg as explicit functions of x. Like for (42) one
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finds initially:
Xp
() = [k @) (30
X0
and by replacing n2k '(x),... one obtains the formula:

i) = (-1 [T a0 [
X0 X0

where we have denoted with upper indexes the variables which replace formally

(2k—1) 1 (2=2)

e
£y 2%2) / / fWdx (81

X0 0

the variable x. One will have also the three equations which correspond to (46):

X (2k—1)
n () = (= 1)F [ dx@® [ pax@0 250

n2H (x,) = (= 1)k fx”fdx (2k) f Y a1 f G fxo fdx (82)
() = (=) [ fax® ) [ ax [

and the four elements of N will be given like in (47) by:

nn = Zl’lll, nipp = ankJrl ny1 = ankH Nnoy = Zl’l%g (83)
k=0

Once the matrix N is known, (77) gives the values of ¥ and of ¥’ for all the values

of x. From (77) one has:
P (x) = ny1 (x)Po + nia(x)¥y. (84)

Since ¥y and ¥, are arbitrary constants, ¥(x) (84) is the general integral of (18).

In the whole interval of variation of x where f(x) is bounded, the matrix
product N (78) is finite. We can show this the same way we have done it for
the matrix M (p.23): one can find a dominant matrix M, whose power is finite.
One then does not have to fear the turning points in the solution (84). Despite
this, the solution (84) is not always very convenient like (49), since it does not
immediately show the essential properties of the wave function. In effect, if the
potential function is given, for example, by a polynomial of x, the formulas (81)

and (82) show that the n3%, ...(82) can be expressed easily as polynomials of x
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so the mgp (83) will be given by the infinite series following the powers of x ,
also absolutely convergent, since N is finite. We know, on the other side, that
the approximate solution (50), which we found from the exact solution, gives the
approximation of geometrical optics.

We supposed that the potential function has a pole of order p, which remains
finite around O. We will require for the wave function and its derivatives up to at

least p' order, to be null at the point O:
_gl) @@ @) (+1)
Yoy =¥, =" —...—‘P(O)—O, ‘P(o) #0, [>p.

This would not, obviously, mean that the function ¥ (84) becomes identically null,
because (o) = ¥(; =0, but to find the values ¥; = ¥(Ax) and ¥} = ¥'(Ax) from
(75), one has to start with this term in the Taylor development, which is not null

for x = 0 and which is proportional to W(+1):
P, =ap(Ax)'t, ) = by(Ax)! (85)

where ay, by are arbitrary constants. One has only to start to construct step by step
the values of W(x) and of ¥(x)’. The formula (84) remains valid when replacing
in it ¥y and W;, with ¥; and ¥} (85). This function is finite in the whole finite
interval of variation of x, and null at the point O.

Let us now return to our potential barrier, which extends from x, to x’, with
Xo < 0 < X’ and let the point O be a pole of order p for the potential. By two
verticals, passing trough the points O; and O, of the abscissa —d and & ( is a
small positive number ) we will limit a barrier which contains the pole. Between
the points O; and O, the solution requires the wave equation (18) to be of the form
(84) and outside of the interval 0,0, — of the form (49). At the points O and O,
one has to write the two conditions of continuity, in order to connect the solutions

inside the interval O;0, with those in its exterior. The final wave function will

61



be then presented by different analytical expressions in the indicated parts of the
interval xox’ but it will be finite everywhere.

For the approximate calculations concerning the problem of barriers one will
retain from the function (84) only the first terms in the development of nqg (83).

Since the turning points P and Q are ordinary points for the function (84), we
can use this to avoid the points P and Q as singular points of the function (49). But
in neighborhood of the points P and Q the function (84) is essentially linear, since
f=2m(E—U) ~ 0, as we have seen from (75). It was exactly a linear function
that we used (p.33) around the points P and Q without previously constructing the
function (84).

In the problem of the solution of the wave equation for several particles, we
will have to make considerations of this type for the singular points, and we will

use the preceding results.

3.6 Application of the preceding method in the case of linear potential

We will apply the preceding method of solving the wave equation to the sim-
ple case, where the potential function is linear. We have seen (triangular barrier
p.6), that one had to study the wave equation:

>V 8n’m
7_’_7(
dg? h?

8m*m : C-F

the equation (86) becomes:

E—-C—F&¥Y =0. (86)

By setting:

d*¥
W +x¥ = 0. (88)

The independent solutions of this equation are the functions \/fc]% (%x%> and

are the Bessel functions of order % and —%.

Ve (%ﬁ), where J1 and J

1
3
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The Bessel function of order vy, where 7y is not a positive integer, is:

wo=(3) L5 6) s

0

This formula gives for A = 1 the functions:

= (3 L5

)" /x\2 1
i G) )

As it is known, the function I' satisfies the functional equation:

I(x+1)=xI'(x)

By applying successively this formula for x =n,n—1,... one finds:

D(n+5+1)=(5+n)(3+n-1)...5.30(3) ©0)
= 5 [1+3n][1+3(n—1)]...7.4.1.1(3)
Cn—3+1)=(—+n)(—t+n-1)..5325H (-} 90)

— L1430~ 1+3(n—1)]...5.2.(=1).0(—1)

Let us now calculate /x. J | ( %) using (89) and (90):

3\2 3
Ayt s 1 1 (2)2 (ﬂ) (=1 1 (2\2n (ﬂh)
\/;C(E)%(i)3<x2> [r( +1) 2 (5) r(;+2)+ +r (5) 1"()1+l+1)+
(3%))( X3 x(, xg 1 ”)C3"
= r(}) (1_374—’_2!32.744_3!33410.7.4.1+"'+n!3”.[1+3n][1+3(n71)] 7a1 -t )
oD
One will also have:
3 _3i X3 x6 (_l)nx%l
{\[J ( 2) F(—S%) (17ﬁ+2!32‘5.27'"+n!3”[71+3n][ 1+3(n—1)].. 852+"')
92)

The general integral of (88) is a linear combination of (91) and (92).




Let us now search for a solution of equation (88) with the second method
which we developed on (p.42). We have written the general integral ¥(x) of the

wave equation in the form (84):
W(x) = n11 (x)Po + ni2(x) Zn x)Wo + ank“ x)¥, (93)

where W, and ¥}, are arbitrary constants and the terms n3%(x), ni5"!(x) are given
by equations (81) and (82).
Using (81) and (82), one can express the n2%(x), n?5™! (x) as multiple integrals

(with f(x) = x):

nk(x /dx/ xdx/ /dx/ xdx (94)
%SH / dx / xdx / / xdx / dx (94

The 2k successive integrations in (94) (respectively the 2k + 1 ones in (94')) can

be easily performed and one arrives at the formulas:

. (—1)kx3k (=1t
= 95
M) = B = 1).986532  3%K258.(3k—1) ©)
1 kx3k+1 -1 kx3k+1
) = = e %)

(3k+1)3k..7.6.4.3.1  3kk!1.4.7..(3k+1)
and one sees that (95) and (95") are respectively the k~™ term in the series (91) and
(92). Thus we found, using the last method, the known solution of equation (88).

If the potential function is given by a polynomial or if it can be expanded
in Taylor series in a interval (xox’), the integral of the wave equation can be rep-
resented by the power series of x. Obviously, we found that solution using the
preceding method. But this method is applicable also in the case where the inte-
gral of the wave equation cannot be expanded in power series of x. If the potential

function U (x) is discontinuous at finite number of points or if it is composed of
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arcs of different curves, remaining always bounded, the integrals (81) and (82)
keep their meaning and the preceding method is still applicable.

We can find also the solutions of the equation (88) with the method of bar-
riers (p. 27-28), but the calculations are much more complicated. The method
of barriers is more convenient for search of approximate solutions of the wave
equation.

Note 1 — When one studies the problem of quantification of the hydrogen
atom in polar coordinates [6], the wave equation can be solved by separation of

variables. The equation depends only on the vector ray r in the following form:

d’R 2dR 2B C
e R e | 6
dr2+rdr+<+r+r2> (96)

where R is a function of r and A, B, C are constants. When the energy E < 0, the
solution of (96) can be presented in the form R = eP/?v(p), where p = % and v(p)
is a polynomial of p. The eigenvalues of the energy form a discrete spectrum. For
E > 0 one finds continuous spectrum.

We can search for solution of this equation by the method of decomposition
of the potential barrier.

Let us divide to n parts (ror’) — the interval of variation of r and let us set for

the interval (rg, res1):

2 2B C
ak:—’ bk:A+7+72, (k:1,2,,n)
147 Ik I"k

One can make a corresponding elementary barrier to each elementary interval.
In the domain (ry,rx11) one can consider the coefficients of the equation (96) as

constants a, by. In the same domain, the total integral of (96) will be:
Ri(r) = Lye ™" 4+ Mye e (97)

where L, M, are constants whose values change from one elementary barrier to

the next, and A4, and A, are the roots of the characteristic equation o2+ a0+ by =
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0. A can be real or complex, the method of solving is equally applicable. The form
of the solution (97) is the same as (19) and one will have the continuity conditions
as in (21). Then one will make the eliminations of L, M with the help of matrices
like (28) and one will arrive at the solution R(r) similar to (49). The discussion of
the convergence is the same like for equation (18).

We can also apply to this equation the method of solution given on page 45.
We denote R(rp) = Ry and (‘fl—f)m = R}, Ry and R|, are arbitrary constants. The
values R; and R of R and % at the point rg + Ary will be calculated with the

formulas:

R1 = R() + AI‘()R6
©7)

Ry = Ry + ArgRy = —Arg (A+ 2+ S ) Ry + (1= 2Ar) Ry,
The right side of the last equation can be expressed in y by replacing R” with its
value from (96).

By analogous to (97') formulas one finds the values Ry, R) etc ... R,,R),. As
for equation (76), one will express R, R), as functions of Ry, R;, with the help of
a matrix in the form of N (78). One will give to the solution R(r) of (96) a form
similar to (84). The discussions of this solution are similar to those of the solution
(84). The turning points of the Classical Mechanics are ordinary points for this
solution. One can also choose the initial values Ry and R;, in a way that R(r) will
be finite at the point r = 0.

Note 2 — After the preceding considerations, it is clear that the two methods
of solving the wave equation developed until now, can be generalized without
difficulty for solving linear differential equations of order n whose coefficients
are known functions of x. One has to use almost diagonal matrices with n rows
and n columns on the place of the matrices with 2 rows and 2 columns. All the

considerations we have done in the case n = 2 apply to the case of any n.
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CHAPTER 4

4.1 Generalization of the method of barriers for the solution of the wave
equation in the general case [4]

We have found the solution of the wave equation in the case of a single parti-
cle moving on a straight line in any field. The essential idea of the method was the
decomposition of the given barrier to successive elementary barriers. The same
method of barriers will permit us to search for solution of the wave equation in the
general case.

We will start with the study of the wave equation for two particles (x) and
(y), of masses m; and m,, which move along the straight line OX, between the
two point of the abscissa xy and x’. Let x and y be the corresponding coordinates.
The potential energy, F(x,y), of the system is composed of the mutual energy of
the particles, of the form Fi,(x — y), function of their relative distance and of the

energy originating from the exterior field, of the form F (x) + F>(y). Therefore:
F(x,y) = F(x) + B(y) + Fa(x—y) (98)

and the wave equation will be:

1 ¥ 1 0*% 8n?

When the term Fj(x —y) = 0, i.e. when the particles are without interaction,
the function ¥(x,y) decomposes to a product of the function ¥;(x) and ¥,(y),
Y(x,y) = ¥;(x)¥,(y). The same decomposition happens also when the exterior
field is constant or null.

The equation (99) is an equation of partial derivatives of the elliptic type. Let
us take in the configuration space of the variables x and y a closed contour C, which
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limits a region P. The integral ¥(x,y) of (99) is determined in the domain P in a
unique way, if we know the values of W on the contour C (a Dirichlet problem).

The integral W of (99) is determined in another way in the problem of col-
lision of two particles [1]. If the potential F' tends to zero when the particles are
very far from each other and from the origin O (for example x and y are very large
and negative), ¥ should reduce to a linear combination of the two monochromatic
plane waves, whose amplitudes tend to zero. It is this last condition which we will
impose on the function ¥, when the considered problem is that of collision.

Let us divide the interval xox’ to n parts with the points of division of the ab-
scissa x1,Xx2,...,X,_1,X, = X'. We suppose that at given moment (x) and (y) are in
the intervals (xg,x.1) and (y;,y;41) respectively. We also suppose that the value
of the potential is constant, equal to F(x;,y;) all the times when (x) is in the in-
terval (xg,xx41) and (y) — in the interval (y;,y;41). Then we will reason as if the
particles are without interaction and in a constant exterior field for very small dis-
placements. But in such case the wave function ¥(x,y) decomposes to a product
of a function W, (x) of x and another W, (y) of y. We replace in (99) ¥(x,y) =
¥, (x)¥,(y) and we divide the equation to W (x)W;(y). Since the potential energy
is supposed to be constant equal to F (xx,y;) = Fi(xx) + F>(y;) + Fi2(xx — y;), the
first member of the equation separates into two expressions: the first, a function
of x and the second, a function of y. It follows that each of them will be equal to
a constant Ay ;. To simplify the calculations, we assume in the following that A,
has a constant value A for all the choices of the indexes k,l. We will see that the
so found solution is an integral of (99) but it is not the general integral of (99).

Then the equation (99) decomposes to two ordinary equations:

g 8n’m
o+ T E = Fi () — Fia (g —y) — AP =0
¢ " (100)

d;;{;z 871:;2mz [x -5 (y)}lpz =0
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We attached the mixed term Fi,(x; —y;) to the first equation of (100). From
(100) we will find an integral of (99), which fulfills the initial conditions, required
by the problem of collision of two particles. If we attached the term Fi,(x; — y;) to
the second equation of (100), we would have found, making the same calculations
which follow, an integral of (99) which fulfills the same initial conditions in the
problem of collision.

The general integral of each of the ordinary equations (100) is a linear com-
bination of two monochromatic plane waves with amplitudes Ay ;, By for the first

and Cy, Dy for the second. Let us introduce the notations:

o2, = SIE — F () — Fia(x — i) — A, on

B, = = — ()] ¥ =0

Although B does not depend on x, we wrote P ; instead of ; because if one
consider A as a function of x and y, B will depend on x.

With W, ; we indicate the wave function which satisfies the equation (99) for
the displacements of (x) and (y) in the interval (x;,xx+1) and (y;,y;+1). We can

then write:

Wei(x,) = (Axse "™ + Br 1) (Cp e P 4 Dy jePr)
(102)

(k,l=1,2,...,n)
For the different values of the indexes k& and /! we will have different solutions,
each valid when x and y vary in the respective defined interval. Since there are two
independent indexes, there will be n* solutions of the form (102). The amplitudes
A1, Bi1,Cr 1, Dy, are functions of x and y, which we consider as constants in the
intervals mentioned above.
Let us consider the solutions W1 ;(x,y). The configuration of the system of

two particles is the same as the configuration corresponding to the solution ¥y,
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except for the position of (x), which is in the interval x;;1,x;2 while (y) has
not changed its interval. The particle (x) moves from the interval x,x;; where
the potential has constant value, at the interval x;,1,x,» where it has different
constant value. The calculations go on as if we had a passage of particles trough
potential barrier. When the particle (x) moves, it has to cross a sequence of barriers
each with constant height. This height depends, naturally, of the position of (x)
and (y). Exactly for the same reason, we can think that (y) crosses a sequence
of elementary rectangular barriers with constant height, function of the position
of (x) and (y). It is clear that the reasoning made for a sequence of rectangular
barriers (p.4) can be applied here too. When the particle (x) switches the barrier,
on the edge of two neighboring barriers, the wave function W (x,y) and its partial
derivative with respect to x should be continuous, considering y as a constant.

Therefore, one can write the two following conditions:

Wit (s 1531) = W10 (kg 1,1)

0¥y, [ 0¥y
ox - ox
X1,)1 X411

¥
dy

(103)

For the same reasons, ¥y ; and should be continuous with respect to y. One

will have two conditions like (103) expressing the continuity with respect to y.
We will give the following explicit form of the conditions (103), taking into
account (102):
(Ak’]e_iak.lxk—l +Bk,l€iw‘/xk+' )(Ck’le—iﬁk.zyz +Dk_lei|3*‘/y’)
= (Aps1 je Ok LYk +Bk+l~leiakq‘lxk+l ) (Crs1 le*inu./,W + Djyy ]eiﬁuu,\’/)

iy (—Ag e Xk 4 By ek )(Cr e Brn _._Dk’[eiﬁk.lyl)

= 0y 11 (—Ap g1 g€ A By K ) (Cryy ge B Dy B
(104)

The two conditions (104) are linear with respect to the amplitudes Ay ;, By 1, Ak+1.1, Bi1.1-

They allow us to express A1, and By, as functions of Ay ; and By ;. We divide
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the two equalities (104) by the last factor of their right sides and we introduce the

notation:
CkJe*lBkal +Dk7lelBk,ly1
Ck+m le_iB/H»m‘lyl + Dk+m leiner,lyl

(105)

Clk+m,] =
The equations (104) will take the form:

Chis1 I(Ak le*i(xuxku +Dklei(xk.1xk+l) = Apg1 Ze*i(xul./xkﬂ + By Ieiuk+|.1xk+1

Ck¢k+1‘lak.l(Ak‘leiiak”Xk‘] _Dkﬁleiuk.lxku) — ak+l.l(Ak+|,[eii(Xk‘ 11Xk+1 _Bk+1‘leiak‘ 1,1Xk41)
(106)

In this form, the difference between the equations (106) and (21) is only in the
factors ¢ x+1,. Consequently the relations between Ay1 7, Biy1, and Ay, By like

(26) will have the form:

Ay

A
’ k+1,1 — Ck7k+1-,le’l Bk’l (107)

By

where My ; is a matrix with two rows and two columns, corresponding to the matrix

M; (33), thus, we can easily write:

Aopg 1

eiAaAk~1xk_ 20y Adags o210 1%k
M _ Z(Xk.]
kil = Aot ; Ad . Aoy g
Akl 72[(Xk_1)6k - A1k 2041
20 ¢ € (108)
aOCk I
Al = Oy1) — Oy = <a =] Axg
X X

The index Ak indicates that the variation of o is caused only by the variation of x,
while y remains a constant. The vector relation (107) is true fork=1,2,...,n. By

applying it for the successive values of k, one will find, like in the problem in one

dimension:
Ak+p,l Ax
= Chgp— 1kt p  Chbp—2ktp—1,0 - okt 1 I M p iMirp—1,0 - - My ' (109)
’ Biypu +p—Lk+p, I Ch+p—2,k+p +p,1Mk+p—1, By,

The product of the factors c in the right part of the last equality is calculated taking

into account (105). This factor product simplifies easily and one finds:

Chtp—1 et pdChp—2k+p—1,0 - Chodet 1] = Chip.l- (110)
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From another side, like we have already done it, the product of the matrices M;_ ;;
in (109) gives a matrix which is calculated, obviously, like M} (29"). In this matrix
product, which we denote by M, ;, the sums in its elements will be extended

from x; to xz,, y remaining a constant. One will finally have:

Ari
By,

)

(111)

Akipi
’ PO = CrrrpiMisp i

Bk+p7l

We can give the conditions of continuity with respect to y in an explicit form like
(104). These conditions will give the two linear relations between Cy 1, Dy 141

and Cy ;, Dy; which one can write in the following vector form (like (107)):

Criv1 Cr
k = N, ' 112
‘ Diror ki1t p (112)
where the factor o1, is composed in an analogous to (105) way:
s Ak Byl (113)
kil+o] = — .
’ Ak,l+ce 10 1+ Xk + Bk’HGelO!k.chk
and Ny ; is a matrix with two rows and two columns, like M ;:
. Byl
elABk‘Alylf 2By Meziﬁk,m
Ny = 2B a5
7 ABI\'.AI EZin’[yl eiiABJ‘\Alyli 2[;‘1;?1
2By (114)

d
ABiar = Bris1 — Bry = < g“) Ay;.
Yy yi

The elimination of the successive amplitudes C,D from Cy;, Dy to Cy jy6,Diito

gives the relation:
Cri
Dy

Ciito

115
Dy o (115

= O +0,/ N0,

where Nj 1, 1s the matrix product of Ny ; and oy ;4 is the factor which remains
from the product of o in (112).
When n — oo, the sums in the terms of My, x; and of Ny, transform to

definite integral: in the terms of M;, «; the integrations are done with respect to
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x, in those of Ny ;15 — with respect to y. The question of convergence of the sums
is the same as in the case of one dimension, for the matrix M (29’). If the function
F(x,y) is continuous with respect to x and y and bounded in the interval xox’,
one can find a matrix M, which is dominant to M} ; and whose arbitrary power is
finite and a matrix N, dominant to Ny ; with similar properties. Then the matrices
M p k1 and Ny 4o, are finite in the interval xox'.

Let us consider the integrals in the terms of the matrices My x; and Ny ;6
as functions of their upper bounds. The elements mqg and ngg (o, B = 1,2) of M
and of N will be known functions of x and y, since they are calculated exactly like
the elements mqg (47) of the matrix M (29). Then, the wave function ¥(x,y),
when x varies in the interval (xxip,Xk4p+1) and y — in the interval (yio,Yi16+1)s
will be :

Wisp 40X, Y) = (Arspiroe " Hoio £ By 14 ge'Mrpiior) (116)

X (Ck+p’l+ce_iﬁk+p.l+c)’ + Dk+pll+ceiﬁk+p.l+c)’).

In the formula (102) and the following, we indicated with the indexes k and /
the arbitrary initial positions of the particles (x) and (y). In order to simplify the
writing and without constraining the generality, we can fix the initial positions of
(x) and (y) with the indexes 0,0. All the formulas from (100) to (116) will be
preserved, by substituting everywhere k = = 0. In the following we will use

those formulas, modified in such way. Particularly, equation (116) will become:
¥, 6(x,y) = (Apce ™ x + By €' ) (Cp e P + Dy gePro?) (116

We can now express the amplitudes Ap s, Bp ¢ from (1 16') as functions of Ay 5, Bo.c
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with the help of (111):

Wo.o(x,y) = [(m11Ao,c +mi2Bog)e %" + (ma1Ag s + manBo )€™

CO‘Ge*iBo,gyc +Do‘cei90="y"
Cp‘ce*fﬁp,cyc +Dp‘6eiﬁp-5»"5

(prce*iﬁp.cy + Dp,GeiBP*’y).
(117)

The last factor in the second term of (117) simplifies with the denominator of
the fraction, since y becomes equal to y; when the intervals tend to zero. The
elements myy,...,my; of the matrix M, oo are functions of x,, because y remains

of the constant value yg.
Let us now make the elimination of the amplitudes C and D in (117) with the
help of (115). One finds:

Wo.o(x,y) = [(m1140,6 + mlzBO,c)ff—ia""’x + (m21A0,6 +m2Bo s )eia"“’x]

Agge 0004 B ;¢/*0.0™0
Agge 40050 4B £%0.6%0

(118)

x [(n11Co,0 +n12D00)e B0 4 (n21Co 0 +naaDo o)e ’B‘“’y"]

where nyy,...,ny are known functions of y (x in nyy,...,ny, remains the constant

X()).

If we eliminate the Cp ,D, ¢ of (116) with the help of (115) and (113) and
the Ap,Bp,0 with the help of (111) and (105), one will find those two forms of
(116"):

Wpo(x,y) = [(m1140,0 +m12Bog)e” %% + (ma1Ag,o + mapBo o) e 0%]

(119)
—iBy sy o1 Cooe B0.0¥0 4Py, e P0.0%0
*[(111Cp0 +n12Dp 0)e oY + (n21Cp 0 + 122Dy )P ”c"ﬁ; 'Bpo\0+Doze’ﬁpmo
In the terms myy,...,my, the integrals are performed with respect to x (y = yg)

and in the nyy, ..., ny,, with respect to y (x = x,).

We have to make a note on the singular points of the potential function
F(x,y), and on the points where the quantity o and  (101) cancel each other.
Those last points correspond to the turning points in the Classical Mechanics for
the problem of one particle. In the region P, which surrounds those points, the

function ¥(x,y) is essentially linear with respect to x and y and one can make
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analogous considerations to those on page 42. On the edge of P one has to agree
the values of the linear function with those of the wave function on the exterior of
P.

The singular points of the potential function F(x,y) are also singular points
for the functions W(x,y) (117) and (118). One can use here also a method with
the help of which one can construct a solution ¥(x,y) which is null at the singular
points of F(x,y) as we did that already in the problem of one particle (p. 40): one
can take as arbitrary parameters the values of the wave function ¥ and %—\f, %—‘;’ at
any point and little by little one can find the values of those quantities in other

points. We will not go into detail on this question, since the calculations are quite

long.

4.2 Verification that the function W, ;(x,y) satisfies the wave equation

In order to construct the function ¥ ; we decomposed the interval xox’ (the
domain of the variables x and y) to small elementary domains (x,xx+1) and (y;,yi+1) (k, I =
1,2,...n). W, is the solution of the equation in the domain above. One can con-
sider that the function W represents a portion of certain surface ¥(x,y). ¥(x,y)
is composed of small surfaces ¥y ; glued on their edges so that they form a contin-
uous surface. This is true for any choice of the intervals, also in the limit, when the
intervals tend to zero. Without verifying it, we are sure that ¥(x,y) is solution of
the wave equation, since it is constructed in a way so that it satisfies it. However,
we will verify that in our calculations. Here, also the direct differentiation of the
final formula (118) is difficult, and we will make the verification like for the linear
problem, namely: we will calculate the values of W for three neighboring values
of x (xg, Xk11 = X + Axy, X0 = X + 2Ax;), while y is fixed and equal to y;. With

those values we will form the derivative (%%’) , following formula (51). In the
Xk Y1
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same way, we will find (%273') and the verification will be immediate.

Xkes V1
Equation (116) gives:
Wit (X0, 1) = (Ag e~ %% 4 By 2% (Cp je = Prdt 4 Dy jeiProot) (120)
Wt (Kicy1531) = (Ag e @ FAR) 4 By ol (e FAN)) (€ e~ Bridt 4 Dy Pt
Following (52) and by keeping the infinitesimals of second order one has:
Wit (i 1,51) = [Ase ™ (1 — it Axg — 506 Axp) + By e 121

X (1+ ioy A — 302 Ax?)][Crge™ Prt 4 Dy jePron ).
From (116) we obtain:

Wit (X2, 91) = P11 (2, 91)
i ” . , .
= (Agyy e it 4 By el (G e iBr1,131 +Dk+l.lelﬁk+l'1yl)~

Let us now replace Ay, Bii1,; with Ay, By, with the help of (107), xx,» with
Xx + 2Ax; and let us expand the preceding expression in the powers of Ax;, by

keeping the terms of AxZ. The little long calculation, like for (53") gives:

Wip1,1 (o +2Ax, ;)
= [Age™ e (1= ioy j Axg — 20 | Axp) + By e (14 2oy Ay — 20 A)] - (122)
X [Ck le—in.IYI +Dy Ieiﬁk.l)'l}.

With the three expressions (120), (121), (122) one easily forms the derivative
(%%’) using the formula (51). One finds:
Xk Vi

P . . o o
( Py ) — (Ak.le*lka.lxk +Bk’lelak.lxk)(Ck’leflﬁk.l)l +Dk,lelﬁk'[yl)(_0(«%,l)
Xk Y1

(123)
=Wt (v, 1) (— 0 )

Quite the same way, one obtains:

%y
(2> W () (—BR). (124)
9 / s

Recalling the formulas (101) one easily sees that equation (93) is satisfied by the
functions W(x,y) (117) and (118).
76



4.3 Determination of the arbitrary constants

The problem we considered of two particles in one dimensional space can
be interpreted as a problem of one particle represented in the configuration space
of two dimensions — a plane. In this plane, we choose the two perpendicular
coordinate axes OX and OY.

Let us consider the function ¥, 5(x,y) (118). For a fixed value of the index
o, (118) will be the solution of the wave equation, valid in the horizontal band
between the lines with equations y = y5 and y = ys11. If we know the numerical
values of Ag o, Bo 0, Co,0, Do,o and those of Ag , By 5, the values of the wave function
¥ will be known in the chosen band. To have the values of ¥ in the next band,
between the lines y = ys_; and y = yg, one has to know also the numerical values
of Aps—1 and Bos—1. One sees that (118) contains sequence of indeterminate
parameters Ay s,Bos (0 = 1,2,...). But since the equation (118) contains them
linearly in the numerator and in the denominator, one can divide those last to A &
(supposing they are not zero) and one will have like arbitrary parameters their
rations: by s = % (¥ is a homographic function with respect to by ). Then in
all the horizontal bands which we have defined above, the solution W will contain
an arbitrary parameter by or also, in all these bands — a sequence of arbitrary
parameters. Their values should be fixed, so that one can calculate the values of
W for all x and y.

Let us consider a horizontal band between the lines y = ys and y = yg. 1.
With this, the values of the elements myy,...,mo of the matrix M oo which en-
ter in (118), will be known as functions of x, (the upper bound of the integrals
in the elements m,1,...,my). Since we have on the above indicated band an ar-
bitrary parameter by s, we can choose it in a way that W, 5(x,,y5) takes a given

value which we indicate with g;. In the same way we can choose the param-
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eter by in the horizontal band between y = ys and y = y5_; in a way that
Wo.o-1(Xp,Ys—1) = 8o—1, Where gs_; is another given value, close to g;. Then
we can find for those arbitrary parameters by (6 = 1,2,...) values such that the
function Y takes sequence of given values g, 81, - . . for a fixed value of x. In the
limit, when the intervals of division Ax, Ay tends to zero, the sequence of values
20,81,82,- .. can be considered as a sequence of values of a function g(y) of y for
Y = Y0,Y1,¥2,.... Thus if we can determine in the indicated way the parameters
by, the function ¥(x,y), solution of the wave equation, will merge with a given

function of y, for a given value of x = x,.

¥(xp,y) = g(v) (125)

The sketched operations are easy to perform. One has to write for the horizontal

band between ys and yg.; the condition:

Wo.6(xp,¥s) = 8(¥s) = gs(0 =1,2,...). (126)

With the help of (118) one sees that the preceding condition expresses g5 as a
homographic function of the parameter by s and one gets the value of by .

The so found formula gives in principle the general solution for the parame-
ters b. Obviously, it is not very easy to discuss, in this general case, if this formula
can be used for all the given values of ys, this is to say, if by s will have finite
values for all the given gs. One should never, for example, choose the modulus of
one of the parameters by s equal to 1, ||bgs|| = 1, because if this is realized, the
denominator in the formula (118) could vanish for certain values of the variables.

We will apply the formula (118) in general to find the approximate solution
of the wave equation. In the case when the potential function is slowly varying, we
have already seen in the problem in one dimension that of the four terms m (47) of

the matrix M (29'), one should keep in first approximation only the two elements
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m?, and m, given by (39) and (39’). By assuming that F (x,y) is a function which
varies slowly, here we will keep also only the elements m{, and m9, of the main
diagonal of the matrix M o. Again, of the terms nyy,...,n2, one will keep only
nY, and n9,. The simplified formula which we thus have found for the by, by
replacing in it the approximate values of m and n, shows that by s are generally
slowly varying functions of x and y. In the case when the mutual interaction of the
two particles (x) and (y) can be ignored, one knows that the solution of the wave
equation can be found by separation of the variables. We can easily find this case
from formula (118) if the term F}, in the potential function is negligible, since in
this case the conditions of continuity (103) are satisfied for Agg =Ap1 =Apr=...
and By = By, = Bp> = .... We will assume that in first approximation, we can
take in the formula (118):

Ao’o :AO,I :AO,Z =... :AO,G =A
(127)

Boo =By =Bo>=...=Bos =8B
This convention simplifies a great deal the calculations which will occur in the
practical cases. This choice of the amplitudes A and B indicates only that our
function ¥ takes, for x = x,, a sequence of values which are the values of a slowly
variable function g(y). Vice versa, if one puts in (120) A and B according to (127),
one will find this sequence of values. Thus, we will accept that (127) exists. The

conditions (127) are equivalent to the unique condition:
boo=bo1=...=bos=0b. (128)

With this convention we write the solution (118) in the form:

Wp.o(x,y) = [(m11 +bmip)e™ %" 4 (my; +myb)e’®<¥][(n11Co 0 +n12Do )e~ Posy (129)
Ae 0,00 1 B'%0,0%0
¢ 1%0,6%0 | pe®0,6%0

+(n21Co,0 +n22Dg 0) €Y
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When the intervals of division Ax,Ay tend to zero, all the terms in (129), which
depend on x, and of ys, become known function of x and y. We can then give to

(129) a final form, removing the indexes p and ©:

W(x,y) = [(m11 +bmy)e DX 4 (my) + mpab) el X))
(130)
Ae~1x0-Y0)%0 4 Bei®(x0-0)%0
e—ia(x0-¥)x0 +bg’°‘(*‘0‘)‘)*'0

x[(n11Co,0+n12D0,0)e " PEIN 4 (ny1 Cp g +n22 Do )P0 )]

This formula allows us to calculate the value of W for all the values of x and y.
One should not forget also that the elements m in (130) are functions of x and y;
my1(x,y),..., just as the n are functions only of y and x = x¢; n;(x0,y),.. ..

Let us assume now that the studied problem is a problem of collision, this is
to say, for very large values of x and y, the potential F(x,y) (98) tends to zero. In
this case, the terms o and  from (129) become constants. From the other side,
we saw that for the linear problem, the matrix M (29") becomes a unity matrix
in a domain where the potential is constant (or null). Since the matrix M,
(111) and Ny 46, (115) have the same form as M (29'), one sees easily that with
the hypothesis we used on F(x,y), one has my; ~ may ~ 1, while myy ~ my; ~
0 and also that ni; ~ nyy ~ 1, while nj; ~ ny; ~ 0 for very large values of x
and y. Recalling formula (118), one sees that each bracket will represent as an
asymptotic form a linear combination of two monochromatic plane waves, and
the last factor (the fraction) will become constant. Consequently, the choice (127)
of the amplitudes A and B determines such integral ¥ of the wave equation, which
is required in the problem of collision, this is to say, that these asymptotic values
describe a uniform motion of the two particles.

Let us now take the form (119) which we gave to the solution (116) of the
wave equation. It is clear that one can make on this formula analogous consider-
ations to those we made for formula (118). One will have the values of ¥ at all

points (xp,Ys) if one knows the constants C, 9, Dpo(p = 1,2,...). In each vertical
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band between the vertical lines x = x,,x = x,11 one has two constants C, o, D) o
or also, if we divide the numerator and the denominator of (119) by C, o and if we
introduce the quantity dp o = % one will have an undetermined parameter dj,  in
each vertical band. One can use these parameters, like in the case of the solution
(118), so that the function ¥ (119) takes a sequence of given values r,(p =1,2,...)

for given y. We will make also the simplification like (127):

Coo=Cio=...=Coo=C
(131)
Doo=D1g=...=Dpo=D
which one can write in another way:
dop=dip=...=dpo=d. (132)

We can finally give that second form of the solution, coming from (119), by re-

moving the index p in the mean time:

P (x,y) = [(n11 +n1ad)e” POV 4 (n) + nppd )P
(133)
Ce~Bx050)504-DeiP(x0¥0)0
efiﬁ(wo)m deBler0)vo

X [(m1140,0-+m12Bo,0)e” 0¥ 4 (my Ag g+maa B g )e!™¥¥0)x]

where one has to write this time for the elements m and n in (133), expressed as
functions of x and y: my;(x,y0),... and ny;(x,y),.. ..

We can now generalize the preceding solution of the Schrédinger equation

in the case of any number of particles in any field. The wave equation in this

configuration space is:

N1 8n2
Z{—_A,‘I’—i—W[E—F(xl,...,xw)]‘l’:o (134)
i= !

We can consider that xy,...,x3y vary in the given interval xox’. Let us divide this

interval to n parts, assuming that the potential has a constant value when each
particle moves in the elementary interval. The solution of the wave equation for

these small variations of the variables will be the product of 3N functions, each
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function being a linear combination of two exponential functions of one variable.
For a determined choice of intervals, one can write the corresponding solution in
the form:

\Pk,l....,p(xl X, .. 7X3N) — H[(Aj)k,l,...,peii(aj)k‘[ ..... bx]+(Bj)k,l7...7pei(aj)k‘l ..... 1,Xj]' (135)
Jj=1

N
One should write 2.3N continuity conditions like (103) on the edges of the neigh-
boring elementary barriers. Of these conditions, one can eliminate the amplitudes
with the help of 3N matrices of two rows and two columns, and one will finally
arrive at a form of the wave function W like (118). The question of convergence in
the elements of the matrices does not differ from that in the already studied cases.

One can determine the amplitudes A;,B; in a way such that the wave func-
tion takes a sequence of given values: values of one function of x;, when the other
variables x; (i # k) have fixed values. If we assume that all the amplitudes A; are
equal to a quantity A, and the same for the other amplitudes, this will be equiva-
lent to assuming that if the particles are far enough from each other, so that one
can neglect their mutual interactions, the wave function will be decomposed to a

product of monochromatic plane waves. This is the condition in the limit for the

problem of collision of particles.
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CHAPTER 5

5.1 The problem of barriers in the relativistic case

The problem of relativistic passage of particles trough a potential barrier will
be treated with the Dirac equation as a departure point. We will give in the begin-
ning some basic concepts of the theory of Dirac.

The Schrodinger equation is not relativistic. It does not contain other effect
than the spin of the electron. One knows that this equation can be found in a formal
manner starting from the classical equation of Hamilton. To this end, one has to

replace in the latter equation in rectangular coordinates the conjugated moments

h 9

37 30 » and the Hamilton function §
k

pi of the coordinates g; with the operators —
with the wave function.
It has been tried to find the relativistic wave equation following the same
path. In the special relativity one has the following relation:
1 2 € 2 22
S(W—eV) —zgpf—zu)—mcrzo (136)

where W is the total energy of the electron, V is its potential energy and A(A,,Ay,A;)

— the vector potential. By introducing the operators:

(137)

one finds an operator, which applied to the wave function, gives the equation:

3
(Pf =Y PP —mgc®)¥ =0 (138)

i
i=1

which has been considered as the relativistic wave equation. But this equation
has some serious defects like M. Dirac has showed. First, it does not allow to
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define a probability density of the presence which will be always positive. Second
the equation (138) is of second order with respect to ¢ and in order to know the
function ¥ in each moment, one has to have the initial values of ¥ and aa—\f. To
avoid this last difficulty, one has to take an equation, which will be of first order
with respect to ¢, and in principle, the relativity requires that it should be the same
for x,y and z. Dirac admits that the equation (138) is a consequence from an
equation of first order of many wave functions, which one finds by decomposing
(138) to two factors of first order. This equation is [8]:
3
(Ps+ Y diPi 4 oumoc) ¥ = 0, (k=1,2,3,4). (139)
i=1
The o are Hermitian matrices of four rows and four columns, which have the

anticommutative property:
ooy ooy =0(i#k), of =1(k=1,23,4)

4
and it acts on the functions ¥y (k= 1,...,4) following the relation: o,\¥; = Z (o)'P)-
=1
The explicit form of (139) is:

1 b3 e (hd i D eAEA
(Ei'i—i_i‘_}_moc)qjl (271:i3x+12m'8y c 1= )lP4

(140)

c 27i dy

o

1 h 0 &V h 0 | :h o _ gA _ .84
GEE+*—W@WV(E$+Z ***** ’T>%
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Knowing the system of functions W, which satisfy the equation (140), the presence
probability of the particles in the volume dxdydz is ¥ YW dxdydz. But the
determination of such solution is not easy if the fields are arbitrary. In the case
when A = 0 and V is function of one of the variables, there is the method of Pauli

[13] of solution of the Dirac equation.

5.2 Passage of particles trough a rectangular potential barrier

We will study now the passage of particles, whose motion is described by
the Dirac equation, trough a potential barrier. This problem is treated by O. Klein
[10].

Let us take the case in which the motion of the particles is done following the
given direction OX. We suppose that the potential energy is null to the left of a
point M with abscissa xy and that it has a constant value P to the right of M.

The potential vector is null everywhere. The particles which propagate from
left to right with constant speed, come and hit the separation surface at M. One
part of the particles is reflected, and another enters in the second medium. The

equation of propagation to the left of M is:

1 ho h d
- ——o = | Y= 141
(c 2mi ot Qo i 8x> #=0 (141)
and to the right of M:
lho P h o
——— =+ —— = |¥r=0. 142
(c mior o T o 8x> ¢ =0 (142)

We will look for a solution of (141) in the form of a monochromatic plane wave

represented by the system of four functions (¥;); (k=1,...,4).
(Wi = (@i)ge ™ F (143)

where all the amplitudes (a;); are constants. By substituting (143) in (141), we
will find the conditions of existence of the solution in the form of a determinant
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equal to zero. By expanding it, one finds:
E? 2
<2—%8—f>=0 (144)
c

We know that (144) is realized always according to (136). One verifies also that
all the subdeterminants of three rows and three columns of the above mentioned
determinant are null. Thus, of the four quantities (a;)x(k = 1,2,3,4) only two are
independent, for example (a;); and (a;)s. Let us set (a;)3 = A, (a;)s = B. The

equations (141) give:

PA pB
a; = — s a; = . 145
() %—Fmoc (ai)2 %—l—moc (145)
We know thus the incident wave W;. For the reflected wave W¥,, we can set:
(W)= (a)ee™ 9, (k=1,2,3,4). (146)

For the (a,); we will have the same condition (144). Two of the (a,); will be
independent, for example (a,); = C,(a,)4s = D. One will find similarly for the
other amplitudes:

pC

9y
%—i—moc

pD

%—i—moc

(ar)) = (ar)r = — (147)

In the interior of the second medium, the wave equation for the transmitted wave

W, will be equation (142), whose solution is the wave ¥;:

2mi ( E—-P

(P)k = (a)gen 5P, (148)

In the same way we will find that there are two independent amplitudes (a,); =

Ci,(a;)4 = Dy and the two other amplitudes are:

—r1C 1D,
a) = D5 ), = P 149
( t)l E;P—I—mOC ( Z)Z E;P—}—mOC ( )
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When the wave in the Dirac Mechanics crosses a potential wall, it remains con-
tinuous. It was proved in [10] the same way as for the wave ¥ in the Shcrodinger
equation. Let us apply this in our problem. The wave function which exists on
the left of the point M is a superposition of the incident wave and of the reflected
wave. On the surface of separation, it should be equal to the transmitted wave.

This gives the conditions of continuity:
(e + (W )e = (Fo)i (k=1,2,3,5). (150)

Of these four linear equalities, one can get the amplitudes C,D,C;, D, as functions

of A and B, which are considered as given.

5.3 Solution of the relativistic problem of barriers using the method of de-
composition of barriers

Let us assume that the electrons which propagate following the positive di-
rection of OX have to cross a potential barrier which extends from x, to x’. The
potential is supposed to be null on the two sides of the barrier. The problem con-
sists of finding the ratio of reflected and transmitted particles. If the form of the
barrier is rectangular (P is constant inside the barrier), the problem is easy, since
one knows the solution of the Dirac equation in the interior of the barrier. The
solution of the equation between xy and x’ is a sum of the two waves propagating
to the left and to the right. One has to write the conditions of continuity, simi-
larly to (150), which exist on the two edges of the barrier. For each wave one will
have two independent amplitudes. In short, one will have ten amplitudes and eight
conditions of continuity, from where one will express eight of the amplitudes as
functions of those of the incident wave.

Let us take a barrier which extends from xg to x’, of any form, this is to say, the

potential is a given function P(x) of x, which we assume continuous and bounded.
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We divide the interval xox’ to n parts, and the barrier to small elementary barriers
of base (x;41,%;), the potential will have constant values P(x;), thus we will have
as a solution of the Dirac equation in (x;.1,x;) a sum of two monochromatic plane
waves. Indicating with y; the wave which propagates to the right and with ¢; th e

one which propagates to the left, their respective components will be given by:
VYik = ahke%(EFPVO, (1)1,]C = bhke%(awﬂ), (k = 1, .o ng = 1, .. .n) (151)

On the common edge of the barrier (x;_y,x;) and (x;,x; + 1) one will have the four

conditions of continuity:

Wik () + 0k () = Wik () + 01k (x0), (k=1,2,3,4) (152)

The four amplitudes which characterize each wave will be then expressed by two
of them, connected by an equality of the form (144), there will be only two inde-

pendent among the four amplitudes. We indicate by:
A=a3, B =a4 (153)
the independent amplitudes of the wave which propagates to the right and by:
Cr=b3, D;y=a4 (154)
those of the wave propagating to the left. By setting:
8= (155)

@‘Fmoc

we will have, exactly as we had for the formulas (145):

ar = —giAr, ap = giBy,
(156)

by = gC, bip = —giD;
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since one has, in short, always the same problem as on page 74 — the plane wave
in Dirac’s theory. With the help of the preceding notations, we can now write
explicitly the conditions (152):

g (Ale*iplxl _ Cleiplxl) - gl—o—l(Al—o—leiilexl _ Cl+leipl+1xz)

Alefiﬁm + Cleiplxl — AH_le*iPlHXI + CH_leiPHle

(157)
g[(Ble*iPm _Dlei[’/)fl) — gl+1(Bl+leiipH1xl _Dl+leipl+1xz)

kBle—ipm +Dlei171xz — BHle—i!’Hm _|_Dl+leim+1xz

From this system of linear equations with respect to the four quantities A, B, C, D,
one can express the amplitudes with index [+ 1 as functions of those with index /.
The determinant Ay | of the coefficients of the amplitudes of the right part of equa-
tions (157) has the value 4. One can consider the amplitudes A; 1, By+1, Cry1, D1
as the components of a vector 7, ;. The equations (157) express a transformation
of the vector 7;,; to the vector 7 with the help of a matrix M; of four rows and
four columns:

Fry1 = M7y (158)
It is easy to solve the equations (157) and one finds for M; = ||(m;)qg], (&, B =
1,2,3,4):
(m)11 = (1+pp)e {Pra=pxi (), = (1 — py)eilPratp,
(my)a1 = (1 —py)e " Protrd (my)5y = (14 py)e (Pr—po,
(my)33 = (14 pp)e PP (my)z4 = (1 — p;)eiPrertrx

(ml)43 — (1 _ pl)e*i(PlHﬂDl)xl7 (ml)44 — (1 4 pl)e*i(Pm*Pl)Xz’

(mi)13 = (my)1a = (my)23 = (my)2a = (my)31 = (my)s2 = (my)ar = (my) 2 =0
(159)

where one sets p; = -°-. From (155), g; and g, have close values, consequently,
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the value of p; is close to unity. The difference p; | — p; is very small. Since all
the terms of M; are divided by %, it follows that all the terms of the main diagonal
have values close to unity and the other terms are very small, thus M, is almost
diagonal. Making the successive eliminations of the amplitudes, one will find the
relation:

rj =My j My .. My =M, ;i (160)

where M, ; is the matrix product. If we introduce the two matrices 6; and T;, to

which the matrix M; decomposes, it can be written:

010

M, = 0 T

(161)

Because of this form of M;, the matrix M; ; (160) will be formed by two matrices ¢
and 7 such that 6 = 64104 j>...6;and T=T;4 ;_1T/4j—>...T;. From the other

side we asked that p; = -2, where g (155) is a known function of x. One can then

g1’
write: A
p=—S =%
g +Ag 8
1 Ag; A 1 Agi
by 1 :1 —_— = 28 ) — 1 —_ = —
2( +p1) i 2( p1) 2

By stopping always on the infinitesimals from the first order, one can represent the

matrix o; in the following way:

. Ag
elAPIXI*TfII Agi e2ipix
— 28
o, = : A (162)
Agl —2ip1x1 71Aplx17T§[
3 e e 1
81

and the same way for the matrix 7;. Now 6; and 7; are in the same form as the
matrix M; (33). Then, there is no difficulty in forming the products ¢ and T, since
the elements of the matrices ¢ and T are composed of those of the matrix M (29").
The elements Gqg, (o, = 1,2) will be given by infinite series as (47). One will
thus have 611 = ¥, 6%,... and also T;; = Y7 (T}, ... The integrals in Gop and
Top Will be known functions of x. With the help of the so-found matrices ¢ and
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T, one immediately writes the matrix M; ;. To know the matrix M ; is to know
the solution of the Dirac equation, since this solution was given in each interval
(x141,%) by the functions (151) and to find this solution in the whole interval xox’,
one needs only the coefficients a;x,b;; as functions of x, which are given to us
by the knowledge of the matrix M; ;. By keeping only the elements 6Y, and 69,
of the main diagonal of ¢ and in analogous way — the elements 19, and 19, of T,
the solution of the Dirac equation which one finds this way, coincides with the
solution of Pauli [13] in the case, where the geometric optics is valid.

Since the two first equations (157) contain only the amplitudes A and C, one
can determine from these two equations only A;;1 and C;; as functions of A; and
C; with the help of the matrix ¢;. In the same way, one will determine B;,; and
Dy from the two last equations (157) with the help of the matrix T;. One could
then do without the matrix M; (159), but we used it, because there are cases where
the system (157) does not decompose to two groups of equations, each containing
only two of the amplitudes.

In the case where the potential vector is not null, and where the scalar poten-
tial is a function of all the coordinates, the solution of the Dirac equation presents

much more difficulties and we would not pursue it here.
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