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1. INTRODUCTION

Path integrals over fields is widely used approach to quantum field
theory. I shall discuss the quantum field theory of spin systems.

Spin systems obtain their magnetic properties from a system of
localized magnetic moments. The dynamical degrees of freedom are
spin-s operators Sr of localized spins which satisfy the SU(2) algebra.
It was shown by Haldane [1, 2] that quantum spin systems could be
formulated in terms of path integrals over vectors which identify the
local orientation of the spin of the localized electrons.

In the present paper I discuss different path integral representations
of the partition function of quantum spin systems.

2. COHERENT STATES FOR SU(2) ALGEBRA

Let Sα
r are the spin operators with α = 1, 2, 3 and r labels the

lattice sites. They obey the SU(2) algebra

Sα
r , Sβ

r


= iδr,r

αβγSγ
r (1)

We consider the Haisenberg model with a Hamiltonian

H =

r,r

Jr,rSr · Sr (2)

where the only condition is Jr,r = 0.
Let us put in correspondence to any lattice site a (2s+ 1) dimen-

sional space of SU(2) group representation. Then the Hilbert space of
the system is the tensor product of all these spaces.

Let us choose as a ”ground state” |0 the vector which satisfies

§3r |0 = s|0 (3)

Following Radcliffe[3] one defines the coherent states and the conjugated
coherent states by the relations

|z = e


r

zr§−r
|0 =


r

ezrS
−
r |0 (4)
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z̄| = 0|e

r

S+
r z̄r

= 0|

r

eS
+
r z̄r (5)

where S±
r = S1

r ±iS2
r , zr are complex numbers and z̄r are their complex

conjugated.
The follow formulae for the matrix elements are straightforeward

generalization of those given in the Radcliffe’s paper [3]

z̄|z =

r

�
1 + z̄rzr

2s
(6)

z̄|S−
r |z =

2sz̄r
(1 + z̄rzr)

z̄|z (7)

z̄|S+
r |z =

2szr
(1 + z̄rzr)

z̄|z (8)

z̄|S3
r |z =

s (1− z̄rzr)

(1 + z̄rzr)
z̄|z (9)

The ”resolution of unity”, which is an expression of the identity
operator in terms of the coherent state operators |zz̄| is given by

 
r

dµ(zr)
1

r
(1 + z̄rzr)

2s |zz̄| = 1 (10)

where

dµ(zr) =
(2s+ 1)

(1 + z̄rzr)
2

d2zr
π

(11)

and the product

r
is over the all lattice sites.

Setting in equations (7),(8) and (9) z = z one obtains the diagonal
matrix elements of the generators Sr

z̄|Sr|z = snrz̄|z (12)

where nr are unit vectors (n2
r = 1) given by

n1
r =

zr + z̄r
1 + z̄rzr

, n2
r =

1

i

zr − z̄r
1 + z̄rzr

, n3
r =

1− z̄rzr
1 + z̄rzr

, (13)
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The equations (13) map the complex plane onto unit sphere S2. It
is convenient to use the azimuthal angle 0 ≤ θr ≤ π and the polar angle
0 ≤ ϕr ≤ 2π as variables determining the coherent states. Making use
of the stereographic projection

zr = tg
θr
2

eiϕr (14)

one obtains

nr = (cosϕr sin θr, sinϕr sin θr, cos θr)

Now the equations (7-10) can be rewritten in terms of the two angles.
For example the matrix elements (6) take the form

n|n =

r

eiγ(n

r,nr)


1 + n

r · nr

2

s

(15)

where γ(n
r,nr) is the area of the spherical triangle with vertices n0 =

(0, 0, 1), n
r and nr. The measure (11) is manifestly rotationally invari-

ant if we rewrite it in terms of unit vectors

dµ(nr) =
2s+ 1

4π
sin θrdθrdϕr =

2s+ 1

4π
δ(n2

r − 1)d3nr (16)

where δ is Dirac’s delta function.

Finally, mapping the complex plane onto disk with radius
√
2s one

introduces another parametrization of the coherent states

ar =

√
2s zr

(1 + z̄rzr)
1
2

ār =

√
2s z̄r

(1 + z̄rzr)
1
2

(17)

where ar and ār are complex numbers subject to the condition ārar ≤
2s. Then the spin vectors Sr = snr (S2

r = s2) are given by

S−
r = ār

√
2s− ārar

S+
r =

√
2s− ārar ar (18)

S3
r = s− ārar
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where S±
r = S1

r ± iS2
r , and the measure (11) takes the form

dµ(ārar) =
2s+ 1

2s

dārdar
2πi

(19)

3. PATH INTEGRAL APPROACH FOR HEISENBERG MODEL

Following the path integral approach I use the coherent states in
the evaluation of the partition function

Z(β) = Tre−βH . (20)

In equation (20) β is the inverse temperature. It is evident from equa-
tion (10) that this function admits the representation

Z(β) =

 
r

dµ(zr)
1

r
(1 + z̄rzr)

2s z̄|e
−βH |z (21)

One may consider the operator e−βH as a multiple of many small
evolutions

e−βH = lim
N→∞


1− β

N
H

N

(22)

Then, using the equation (10) one obtains

Tre−βH = lim
N→∞

 
r

dµ(zr)
N−1
k=1

dµ(zr(τk))z̄|

1− β

N
H


|z(τN−1)

z̄(τN−1)|

1− β

N
H


|z(τN−2) . . . z̄(τ1)|


1− β

N
H


|z

exp


−2s


r

[ln (1 + z̄rzr) + ln (1 + z̄r(τN−1)zr(τN−1))

+ . . .+ ln (1 + z̄r(τ1)zr(τ1))]} (23)
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The kernel z̄(τk)|

1− β

NH

|z(τl) can be represented in the form

z̄(τk)|

1− β

N
H


|z(τl) =


1− β

N
h (z̄(τk), z(τl))


z̄(τk)|z(τl)

 exp


− β

N
h (z̄(τk), z(τl)) + 2s


r

ln (1 + z̄rzr)


. (24)

Making use of the equations (6-9), one represents the Hamiltonian in
the form

h (z̄(τk), z(τl)) = s2

r,r

Jr,r × (25)

2 [z̄r(τk)zr(τl) + z̄r(τk)zr(τl)] + [1− z̄r(τk)zr(τl)][1− z̄r(τk)zr(τl)]

[1 + z̄r(τk)zr(τl)][1 + z̄r(τk)zr(τl)]

where the term independent of z̄r(τk) and zr(τl) is dropped.

Now we proceed taking the continuum limit N → ∞ and find the
path integral representation of the partition function

Z(β) =

 
τ,r

dµ(zr(τ))e
−S(z̄,z) (26)

where

S(z̄, z) =

β

0

dτ


2s


r

1

1 + z̄r(τ)zr(τ)
z̄rżr + h(z̄(τ), z(τ))


(27)

is the action, and the hamiltonian is

h(z̄(τ), z(τ)) = s2

r,r

Jr,rnr(τ) · nr(τ) (28)

In the above, the overdots correspond to time derivatives. The com-
plex fields z̄r(τ), zr(τ), and the real vector fields nr(τ) satisfy periodic
boundary conditions z̄r(β) = z̄r(0), zr(β) = zr(0),nr(0) = nr(β).
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One can use the coherent states labeled by the unit vector nr to
derive the path integral representation for the partition function [1, 2].
Then the measure is given by

dµ(n) =

τ,r

2s+ 1

4π
d3nr(τ)δ(n

2
r(τ)− 1) (29)

(see Eq.(16)) and the action adopts the form

S =

β

0

dτ


is


r

A(nr) · ṅr(τ) + h(τ)


(30)

In equation (30) A(nr) is the vector potential of a Dirac magnetic
monopole at the center of the unit sphere

A =
1− cos θ

sin θ
eϕ (31)

It obeys locally

∂n ×A(n) = n (32)

The kinetic term in Eq.(30) is invariant under the gauge transfor-
mations

A → A + ∂nα,

where the parameter α is defined on the sphere. It is more convenient
for further calculations to do a gauge transformation which leads to the
vector potential

A = − coth θ eϕ (33)

In this case the half of the string is up the north pole and the other half
is down the south pole. Thus, the vector potential is an even function
of its argument

A(n) = A(−n) (34)

Making use of the third parametrization of the coherent states (17)
one obtains a path integral in terms of complex fields ar(τ) and ār(τ),
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which satisfy ār(τ)ar(τ) ≤ 2s and periodic boundary conditions. The
measure is given by

dµ(ā, a) =

τ,r

2s+ 1

2s

dār(τ)dar(τ)

2πi
(35)

Substituting in the Hamiltonian and the kinetic term one rewrites the
action in the form

S =

β

0

dτ


1
2


r

(ār(τ)ȧr(τ)− ˙̄ar(τ)ar(τ)) +

r,r

Jr,rSr(τ) · Sr(τ)




(36)
where the spin vectors are given by (2.18).

The field theories defined by the actions (27), (30) and (36) can
be thought of as a particular case of a more general Abelian gauge field
theory. To see how does this come about I introduce two complex fields
ψk
r (τ) (k = 1, 2) by the relations

|ψ1
r (τ)| =

√
2s

(1 + z̄r(τ)zr(τ))
1
2

= (2s− ār(τ)ar(τ))
1
2

ψ2
r (τ) =

√
2s zr(τ)

(1 + z̄r(τ)zr(τ))
1
2

= ar(τ) (37)

Let substitute Eq.(37) in Eq.(27) or Eq.(36) and take into account the
condition

arg ψ1
r (τ) = 0 (38)

One gets

S =

β

0

dτ



α,r

ψ̄α
r (τ)

d

dτ
ψα
r (τ) +


r,r

Jr,rSr(τ) · Sr(τ)


 (39)

where the spin vectors are equal to

Sν
r (τ) =

1

2
ψ̄α
r (τ) σν

ααψα
r (τ) (40)

100

and σν are Pauli matrices. The new fields obey the constraint [4]

ψ̄1
r (τ)ψ

1
r (τ) + ψ̄2

r (τ)ψ
2
r (τ) = 2s. (41)

Let take care of the local constraint (41) by introducing an ex-
tra term in the action with the Lagrangian multiplier field λr(τ) which
enforces the constraint. Collecting all terms one obtains the final ex-
pression for the partition function

Z(β) =

 
α,r,τ

dψ̄α
r (τ)dψ

α
r (τ)


r,τ

δ

argψ1

r (τ)

e−Stot (42)

where the action

Stot =

β

0

dτ


α,r

ψ̄α
r (τ)


d

dτ
− iλr(τ)


ψα
r (τ) + 2siλr(τ)

+

r,r

Jr,rSr(τ) · Sr(τ)


 (43)

is invariant under the gauge transformations

ψα
r (τ) = eiγr(τ)ψα

r (τ), ψ̄α
r (τ) = e−iγr(τ)ψ̄α

r (τ),

λ
r(τ) = λr(τ) +

d

dτ
γr(τ) (44)

if the gauge parameters γr(τ) satisfy γr(0) = γr(β).
Let us discuss the Abelian gauge theory (43). Following the stan-

dard procedure of quantization, one has to impose an additional gauge
fixing condition. If we do this, imposing the condition (38), and then
solve the constraint (41), using different parameters we get different
field theoretical realizations of the Heisenberg model. On the other
hand, one can choose the gauge fixing condition in an alternative way.
For example, a convenient gauge condition is the temporal condition im-
posed on the Lagrangian multiplier λr(τ). The gauge fixing condition
reads

λr(τ) = λr (45)
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where λr depends on the lattice sites but is not a function of the imagi-
nary time. It follows from derivation, that so obtained field-theoretical
descriptions are equivalent.

4. SUMMARY

Starting from different parameterizations of coherent states of SU(2)
algebra I have derived different path integral representations for the
quantum spin systems. In the first case Eqs.(26,27) the path integral
is over complex fields and the representation is appropriate for Monte
Carlo numerical calculations. In the second case Eqs. (29,30), the path
integral is over unite vectors which identify the local orientation of the
spin of the localized electrons. For antiferromagnetic systems it is uti-
lized to derive [1] an effective σ model of the antiferromagnetism. For
these calculations one uses the representation Eq.(33) of the Dirac’s
vector field. Finally, the path integral over the complex fields ār(τ) and
ar(τ) Eqs.(35,36) is an alternative to the operator Holstein-Primakoff
approach.
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