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Pymen IJexos. KBAHTOBO BPAYHOBO JBIVKEHUE ITO AMHIIATIH

BpayHoBOTO nBIKEHME Ha eIHA KBAaHTOBA YAaCTHWIA B KIACHYECKa Cpela € H3CICABAHO
o MeTofga Ha AWHIAWH 4pe3 BUpPHATHATA TEOpeMa M TeopeMara 3a PaBHO pas3lpeieieHHue Ha
€HeprusATa M0 KBaJpaTHIHU CTeNeHN Ha cBoOoza. EexTsT Ha HENMPeKbCHATO U3MEPBAHE OT CTPaHa
Ha CHJIHO AWCHIIATHBHATA CPeJa € OTYETEH U € MOIyYeHO KBAHTOBO 000OIIEHNEe Ha KIACHIECKUS
3aKOH Ha AMHIIAiH 32 OpayHOBOTO IBIDKCHHUE. M3BEIeHO € HOBO TEpMO-KBAaHTOBO ypaBHEHHE Ha
CMoIyxoBCKH Upe3 0000IeHNe Ha KBaHTOBAaTa XUIPOANHAMHIKA, peiokeHa oT Mazenynr. To e
MPUIIOKEHO 32 ONHMCAHUE Ha KBAHTOBO TyHENIPAHE IIPU CTATHYHU M PABHOBECHH yCIIOBHS, KAKTO U
Ha npob6iema Ha CMomyxoBckH-I10acoH 3a IBIDKEHHETO Ha €IUH €JIEKTPOH B METAl.

Roumen Tsekov. QUANTUM EINSTEIN’S BROWNIAN MOTION

Einstein’s Brownian motion of a quantum particle in a classical environment is studied via
virial and equipartition theorems. The effect of continuous measurement in a strongly dissipative en-
vironment is accounted for and a quantum generalization of the classical Einstein law of Brownian
motion is obtained. A thermo-quantum Smoluchowski diffusion equation is derived via a generaliza-
tion of the Madelung quantum hydrodynamics. The latter is applied for description of the quantum
tunneling at equilibrium and stationary states as well as of the motion of an electron in metals, i.e.
the Smoluchowski-Poisson problem.
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In 1905 Einstein has published three papers, which revolutionized our knowl-
edge for the Nature. In the first one, accepting that the light consists of discrete
quanta of radiation, called later photons, he explained the photoelectric effect that
certain metals emit electrons when irradiated. For this contribution to quantum
theory Einstein received the 1921 Nobel Prize in Physics. In the second paper
Einstein proposed the special theory of relativity, which reinterprets the classical
mechanics presuming that the speed of light remains constant in all frames of ref-
erence. Thus he discovered the equivalence of mass and energy. The third of his
seminal papers [1] concerned the Brownian motion, where Einstein calculated the
average trajectory of a microscopic particle forced by random collisions with the
molecules in a fluid. He extended the Boltzmann view and provided convincing
evidence for the physical existence of molecules. His probabilistic theory let to
enormous progress in our understanding of non-equilibrium thermodynamics and
is a precursor of many modern kinetic models of diffusive stochastic processes in
the Nature.

According to the classical statistical mechanics the equilibrium in the mo-
mentum space is achieved when a particle spent in a fluid a period larger than
the classical momentum relaxation time m/b, where m and b are the particle mass
and friction coefficient, respectively. Thus, following the equipartition law the
particle momentum dispersion Gi =mk,T is proportional to the temperature T.
On the other hand, the virial theorem states that at large times the momentum
dispersion can be expressed by the force acting on the particle via the relation
0, /m=—<Fx>. After Langevin [2] the total force F=-bx+ f is a sum of
the friction force, proportional to the Brownian particle velocity, and the stochas-
tic Langevin force /. Substituting this expression the virial theorem acquires the
form G; =bG,,, since the random contribution of f vanishes because the Langevin
force is not correlated to the position of the Brownian particle. Integrating now
on time the virial theorem accomplished by the Maxwell expression Gi =mk,T
yields the Einstein law of Brownian motion

o’ =2Dt (1)

where the particle diffusion constant D =£k,T /b is introduced via the classical
Einstein formula. This linear dependence of the particle position dispersion G-
on time ¢ is proven many times and has become a textbook law for diffusion pro-
cesses.

After the establishment of the Einstein theory of Brownian motion the quan-
tum mechanics was born. Although it changed drastically the description of clas-
sical mechanics, the Einstein law (1) is still regularly applied to quantum ob-
jects. Indeed, the fluctuation-dissipation theorem [3] shows that the fluctuating
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Langevin force in a quantum environment is not a white noise but many of the
important examples in practice are for a quantum Brownian particle moving in a
classical environment. For instance, in the case of an electron moving in a crystal
the lattice vibrations can be described via the classical mechanics down to rela-
tively low temperatures. Colored noises are observed also in classical systems and
naturally reflect in deviations from the Einstein law but they are out of the scope
of the present paper. The quintessence of quantum mechanics is the Heisenberg
uncertainty principle [4], which imposes a restriction on the momentum and posi-
tion dispersions of a quantum particle. Substituting in the Robertson-Schrodinger
uncertainty relation 670> -, 2/’ /4 [5, 6] the classical Einstein expressions
Gi =mhk,T, O, = mD and o’ =2D¢ yields immediately that the Einstein law
(1) satisfies the Heisenberg principle only at large times, ¢t >\ /2D +m/2b

where Ay =h/2\mk,T s the thermal de Broglie wave length. Since the Ein-
stein law is valid for large times ¢ > m/b, a necessary condition for consistency

of these inequalities is A; /D <m/b . The latter shows that the uncertainty prin-
ciple holds for a quantum Einstein’s Brownian particle at faster classical diffu-

sion only, D 2%/2m . The quantum characteristic time A7 /D can be also writ-

ten as an oscillator relaxation time b/ mw; with the second Matsubara frequency
o, =2k, T/H.

Obviously, the Einstein’s Brownian motion of a quantum particle in a classi-
cal environment is not described by Eq. (1) and the scope of the present analysis
is to obtain a generalization of the classical Einstein law. This is especially impor-
tant at low temperature and strong friction, where D <7/2m . If a Gaussian wave
packet spreads in vacuum the constant momentum dispersion Gi =h’/4062(0) is
determined by the initial position dispersion of the packet. These momentum and
position dispersions are due to an initial measurement fixing the wave packet. In
highly dissipative environment the quantum particle is continuously measured
by the environment and, for this reason, any moment could be considered as a
new beginning. Hence, the momentum dispersion Gf, =7"/46> in this case will
depend on the current value of the position dispersion. This is the minimal Heisen-
berg relation, which is valid for Gaussian processes as free Brownian motion cer-
tainly is. Substituting this expression into the virial theorem © f, =b0,, being valid
for quantum objects as well, and integrating on time yields an expression for the
purely quantum diffusion [7]

o) =ht/mb )

Since Eq. (2) is valid for ¢>m/b it follows that o©.>#h/b and
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Gi =hmb/t/4<hb/4. Considering now the case of a non-zero temperature,
the thermalization of the Brownian particle is achieved at ¢ > m/b indeed but
quantum relaxations are still in progress since o is finite. Hence, in this case
one can propose the following Maxwell-Heisenberg expression for the particle
momentum dispersion

o) =mhkyT + 1’/ 40, (3)

which is a superposition between the thermal and quantum components. It is valid
at high friction only, satisfies the Heisenberg principle at any time and reduces at
infinite time to the equilibrium results Gi =mk,T and o> =co. Obviously due
to quantum effects the momentum relaxation of a quantum Brownian particle is
non-exponential. The thermo-quantum expression (3) corresponds to continuous
measurements of the quantum Brownian particle by a thermal dissipative envi-
ronment. Introducing Eq. (3) into the virial theorem Gi =bo,, results after inte-
gration on time in the following generalization of the Einstein law of Brownian
motion [7]

6. —ArIn(l1+6°/A3)=2Dt. 4)

At large time o~ is larger than the thermal de Broglie wave length square
A7 and hence Eq. (4) tends asymptotically to Eq. (1). At short time, however,
Eq. (4) reduces to Eq. (2), which describes the purely quantum diffusion at zero
temperature as well.

It is interesting to explore how the classical diffusion equation will change for
a quantum Brownian particle. Traditionally, the quantum particles are described
by the Schrodinger equation. In 1927 Madelung has demonstrated [8], however,
that the Schrédinger equation can be presented in an alternative hydrodynamic
form

0,p==V-(pV), mdV +mV-VV =-VU-V-P,/p, ®)

where p is the probability density, V' is the hydrodynamic-like velocity, U is an
external potential and P, =—(h*/4m)pV®VInp is a quantum pressure ten-
sor. These Euler equations describe the evolution of the probability density in
vacuum. In the case of a classical dissipative environment one can enhance the
dynamic balance (5) by a friction force —b} and thermal pressure tensor k,7pl
to obtain the equation mod,V +mV -VV +bV =-V(U + Q+k,TInp) [7], where
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0=-1V>Jp/2mp is the Bohm quantum potential [9], being related to the
quantum pressure tensor via the Gibbs-Duhem relation V- P, =pVQ . Neglecting
now the inertial terms at strong friction this results in

V=-V(U+Q+k,Tlnp)/b. (6)

Introducing the velocity V from Eq. (6) into the first continuity equation from
Egs. (5) yields the following thermo-quantum diffusion equation [7]

0p=V-[pV(U +Q)/b+ DVp]. (7

This is a Smoluchowski equation describing classical diffusion in the fields of
an external and quantum potentials. The latter is, however, a non-trivial potential
and depends on the probability density. It is, in fact, a chemical potential originat-
ing from the particle quantum kinetic energy. While the logarithmic term in Eq.
(6) originates from the Boltzmann entropy, the average value of the quantum po-
tential is proportional to the Fisher entropy. The solution of Eq. (7) for a free par-
ticle is a Gaussian probability density with position dispersion given by Eq. (4).

One of the most interesting quantum phenomena is the tunneling effect. If an
equilibrium system is considered than = 0 and Eq. (6) reduces after integration
to the following differential equation regarding the function Inp

~h*(V2Inp,,)/4m~1*(VInp, )" /8m+k,TInp, =F -U. (8)

Here the quantum potential is presented in an alternative form and F' is the
constant free energy. This equation provides several important results. In the
classical limit, for instance, the probability density is the Boltzmann distribution
Poq = €Xp[(F — U)/kyT]. At zero temperature and a strong potential (U > E) the
second quadratic term in Eq. (8) dominates and thus Eq. (8) provides the well-
known tunneling WKB distribution

p., = Cexp[-2[ dx2m(U - E) /1],

where F is the full energy. An interesting new result follows from Eq. (8) for a
weak potential (U < E) at zero temperature, when the leading term is the first
one

p,, = Cexpl4m| dx[dx(U - E)/ "]
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Therefore, in case of a general potential the solution of the complete Eq. (8)
is required.

The dynamics of the tunneling effect can be also described by the Madelung
hydrodynamics. Neglecting the non-stationary term in the dynamic Eq. (5) and
integrating the resultant equation yields the stationary hydrodynamic velocity

V.= \/2(E —U —Q)/m . Now introducing it in the first continuity equation from
Eq. (5) leads to the following equation

0,p=-0,[p\2(E-U-0)/m] 9)

describing the dynamics of quantum tunneling as well. The stationary solution of
Eq. (9) is given by the differential equation

P, =CI\2AE-U)/m+123* o, Im*Jp, .

whichintheclassicallimitreducestotheergodicdistribution p, = C/\J2(E-U)/m
, following from the relative time spent at a given position. Substituting of this
classical distribution in the quantum potential above results in a semiclassical
stationary distribution

P, =CI2AE-U)/m+ 029U 4m*(E -U) +50*(d,U)* /16m*(E -U)* .

Naturally, in the equilibrium case Eq. (9) reduces to Eq. (8) at zero tem-
perature. The effect of temperature and friction on the quantum tunneling can
be described by the dissipative Madelung hydrodynamics [7] discussed before.
Moreover, the Madelung hydrodynamic approach provides possibility for study-
ing nonlinear friction [10] and relativistic [11] effects on the quantum tunneling
as well.

The quantum Smoluchowski equation (7) can be employed also for descrip-
tion of the motion of an electron in a metal under the action of an electric potential
¢. Since at large friction the electron velocity is small the electric potential can be
described well via the electrostatic Poisson equation

e eVo=e(p—p,), (10)

where g ¢ is dielectric permittivity and the density p,, of the positive charge in the
metal is accepted to be constant in the frames of the jelly model. If the electron
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density p differs slightly from the equilibrium value one can linearize Eq. (7) with
U = —e around p,, to obtain

0,0=V-(=ep,VO/b—hV’p/4mb+ DVp). (11)

Excluding now the electron density p among the system of linearized quan-
tum Smoluchowski-Poisson equations (10) and (11) leads to a diffusive equation
for the electric potential

0,0 ==D(¢/A} + A2V -V?0), (12)

where A, =./e,ek,T/e’p, is the Debye screening length. Using Eq. (10), Eq.
(12) can be rewritten for the electron density as well

0,p==D[(p—p,)/ A +A;Vip-V7p]. (13)

The Fourier image of the solution of Eq. (13) reads

P, =Poll—exp(=Dt/A})18(q) +exp(=D,q’1) , (14)

where the effective diffusion coefficient equals to D, = D(1/ Mg +1+A2q%).
For small wave vectors the diffusion is driven mainly by the electrostatics and
D,=D/ 2q° =€’p, /€,ebq” . At large wave vectors the electron is very localized
and the diffusion is dominated by quantum effects with D, = DA;q” = h’q* /4mb
. In the intermediate region of wave vectors the effective diffusion coefficient ex-
hibits a minimum D, =D+ ho, /b at g=1/ JApA; , where the Langmuir plasma

frequency equals to ®, =+/e’p, / me, €. Since the Smoluchowski-Poisson problem
describes also other systems [12], the present analysis is relevant to the signifi-
cance of quantum effects there, for instance, in the self-gravitation.

In the case of Earth gravitation with the constant acceleration g Eq. (7) re-
duces to

9.p=0,{pd.[{—2(ct, 1)’ 03/p /[p1+0.p0} (15)

where the classical dimensionless distance = o,z and time t= Dot with
o, =mg/k,T are introduced. As is seen the importance of the quantum term in-
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creases by the increase of the ratio of the thermal de Broglie length A, and the
classical mean barometric height 1/a.,. Their equality defines via oA, = 1 a char-

acteristic temperature T, =3/2mg’h” / 2k, , which is quantum but increases by
the particle mass m. For electrons, for instance, it equals to T % = 0.45 nK, which
corresponds to a macroscopic thermal de Broglie length A, = 0.7 mm. One can
present generally the solution of Eq. (15) as a sum of the class1cal barometric dis-
tribution and a quantum correction, p = aexp(-C) + w. If the latter is small one
can linearize Eq. (15) to obtain

81w=acw—(Tg/T)3(282w+382w+aéw)/2+aéw. (16)

This equation describes the combined effect of biharmonic, cubic and har-
monic quantum diffusions to the classical Smoluchowski equation, which is
strongly depressed by the temperature.

APPENDIX

The aim of this appendix is to draw a simple picture of the quantum Brownian
motion. Let us have a quantum Brownian particle, which moves in two steps: a
quantum and a classical one. First, it performs a standard 3D Brownian walk with
a universal quantum diffusion coefficient #/2m [13]. Hence, following Einstein
we have for the particle dispersion

o, =ht/m, (17)

where 1 is the duration of this movement. The length of the part drawn by the par-
ticle equals to / = ct, where c is the real velocity of the particle, e.g. ¢ = k,T/m.
Thus, Eq. (17) acquires the form, which is known from the polymer physics as
well,

o, =hl/mc. (18)

Hence, the segment length equals to the de Broglie one, /i/mc.

Secondly, we put the particle to perform 1D classical Brownian movement
along the trajectory drawn by the first quantum move. According to Einstein the
particle will reach the end of the path at time ¢ = /D, where D is the usual classi-
cal Einstein diffusion coefficient, e.g. D = mc?/b = k,T/b with b being the particle
friction coefficient. Substituting / from this relation in Eq. (18) yields
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o’ =h\t/mb. (19)

This expression coincides with Eq. (2) and shows that the quantum particle

undergoes a usual Brownian motion in a Brownian-fluctuating quantum space.
This idea is somehow close to the de Broglie pilot-wave, which corresponds to
the fist quantum move drawing the part, along which the particle to perform the
second classical Einstein Brownian motion.
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