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where λr depends on the lattice sites but is not a function of the imagi-
nary time. It follows from derivation, that so obtained field-theoretical
descriptions are equivalent.

4. SUMMARY

Starting from different parameterizations of coherent states of SU(2)
algebra I have derived different path integral representations for the
quantum spin systems. In the first case Eqs.(26,27) the path integral
is over complex fields and the representation is appropriate for Monte
Carlo numerical calculations. In the second case Eqs. (29,30), the path
integral is over unite vectors which identify the local orientation of the
spin of the localized electrons. For antiferromagnetic systems it is uti-
lized to derive [1] an effective σ model of the antiferromagnetism. For
these calculations one uses the representation Eq.(33) of the Dirac’s
vector field. Finally, the path integral over the complex fields ār(τ) and
ar(τ) Eqs.(35,36) is an alternative to the operator Holstein-Primakoff
approach.
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Румен Цеков. Квантово Брауново движение по Айнщайн�

Брауновото движение на една квантова частица в класическа среда е изследвано 
по метода на Айнщайн чрез вириалната теорема и теоремата за равно разпределение на 
енергията по квадратични степени на свобода. Ефектът на непрекъснато измерване от страна 
на силно дисипативната среда е отчетен и е получено квантово обобщение на класическия 
закон на Айнщайн за брауновото движение. Изведено е ново термо-квантово уравнение на 
Смолуховски чрез обобщение на квантовата хидродинамика, предложена от Маделунг. То е 
приложено за описание на квантово тунелиране при статични и равновесни условия, както и 
на проблема на Смолуховски-Поасон за движението на един електрон в метал.

Roumen Tsekov. Quantum Einstein’s Brownian motion

Einstein’s Brownian motion of a quantum particle in a classical environment is studied via 
virial and equipartition theorems. The effect of continuous measurement in a strongly dissipative en-
vironment is accounted for and a quantum generalization of the classical Einstein law of Brownian 
motion is obtained. A thermo-quantum Smoluchowski diffusion equation is derived via a generaliza-
tion of the Madelung quantum hydrodynamics. The latter is applied for description of the quantum 
tunneling at equilibrium and stationary states as well as of the motion of an electron in metals, i.e. 
the Smoluchowski-Poisson problem.
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In 1905 Einstein has published three papers, which revolutionized our knowl-
edge for the Nature. In the first one, accepting that the light consists of discrete 
quanta of radiation, called later photons, he explained the photoelectric effect that 
certain metals emit electrons when irradiated. For this contribution to quantum 
theory Einstein received the 1921 Nobel Prize in Physics. In the second paper 
Einstein proposed the special theory of relativity, which reinterprets the classical 
mechanics presuming that the speed of light remains constant in all frames of ref-
erence. Thus he discovered the equivalence of mass and energy. The third of his 
seminal papers [1] concerned the Brownian motion, where Einstein calculated the 
average trajectory of a microscopic particle forced by random collisions with the 
molecules in a fluid. He extended the Boltzmann view and provided convincing 
evidence for the physical existence of molecules. His probabilistic theory let to 
enormous progress in our understanding of non-equilibrium thermodynamics and 
is a precursor of many modern kinetic models of diffusive stochastic processes in 
the Nature.

According to the classical statistical mechanics the equilibrium in the mo-
mentum space is achieved when a particle spent in a fluid a period larger than 
the classical momentum relaxation time m/b, where m and b are the particle mass 
and friction coefficient, respectively. Thus, following the equipartition law the 
particle momentum dispersion σ p Bmk T2 =  is proportional to the temperature T. 
On the other hand, the virial theorem states that at large times the momentum 
dispersion can be expressed by the force acting on the particle via the relation  
σ p m Fx2 / = − < > . After Langevin [2] the total force F bx f= − +  is a sum of 
the friction force, proportional to the Brownian particle velocity, and the stochas-
tic Langevin force f. Substituting this expression the virial theorem acquires the 
form σ σp xpb2 = , since the random contribution of f vanishes because the Langevin 
force is not correlated to the position of the Brownian particle. Integrating now 
on time the virial theorem accomplished by the Maxwell expression σ p Bmk T2 =  
yields the Einstein law of Brownian motion

σx Dt2 2= 	 (1)

where the particle diffusion constant D k T bB= /  is introduced via the classical 
Einstein formula. This linear dependence of the particle position dispersion σx

2  
on time t is proven many times and has become a textbook law for diffusion pro-
cesses.

After the establishment of the Einstein theory of Brownian motion the quan-
tum mechanics was born. Although it changed drastically the description of clas-
sical mechanics, the Einstein law (1) is still regularly applied to quantum ob-
jects. Indeed, the fluctuation-dissipation theorem [3] shows that the fluctuating 
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Langevin force in a quantum environment is not a white noise but many of the 
important examples in practice are for a quantum Brownian particle moving in a 
classical environment. For instance, in the case of an electron moving in a crystal 
the lattice vibrations can be described via the classical mechanics down to rela-
tively low temperatures. Colored noises are observed also in classical systems and 
naturally reflect in deviations from the Einstein law but they are out of the scope 
of the present paper. The quintessence of quantum mechanics is the Heisenberg 
uncertainty principle [4], which imposes a restriction on the momentum and posi-
tion dispersions of a quantum particle. Substituting in the Robertson-Schrödinger 
uncertainty relation σ σ σx p xp

2 2 2 2 4− ≥  /  [5, 6] the classical Einstein expressions 
σ p Bmk T2 = , sxp = mD and σx Dt2 2=  yields immediately that the Einstein law 
(1) satisfies the Heisenberg principle only at large times, t D m bT≥ +λ2 2 2/ /  
where λT Bmk T≡  / 2  is the thermal de Broglie wave length. Since the Ein-
stein law is valid for large times t ≥ m/b, a necessary condition for consistency 
of these inequalities is λT D m b2 / /≤ . The latter shows that the uncertainty prin-
ciple holds for a quantum Einstein’s Brownian particle at faster classical diffu-
sion only, D m≥  / 2 . The quantum characteristic time λT D2 /  can be also writ-
ten as an oscillator relaxation time b m/ ω2

2  with the second Matsubara frequency 
ω2 2= k TB /  .

Obviously, the Einstein’s Brownian motion of a quantum particle in a classi-
cal environment is not described by Eq. (1) and the scope of the present analysis 
is to obtain a generalization of the classical Einstein law. This is especially impor-
tant at low temperature and strong friction, where D m<  / 2 . If a Gaussian wave 
packet spreads in vacuum the constant momentum dispersion σ σp x

2 2 24 0=  / ( ) is 
determined by the initial position dispersion of the packet. These momentum and 
position dispersions are due to an initial measurement fixing the wave packet. In 
highly dissipative environment the quantum particle is continuously measured 
by the environment and, for this reason, any moment could be considered as a 
new beginning. Hence, the momentum dispersion σ σp x

2 2 24=  /  in this case will 
depend on the current value of the position dispersion. This is the minimal Heisen-
berg relation, which is valid for Gaussian processes as free Brownian motion cer-
tainly is. Substituting this expression into the virial theorem σ σp xpb2 =  being valid 
for quantum objects as well, and integrating on time yields an expression for the 
purely quantum diffusion [7]

σx t mb2 =  / 	 (2)

Since Eq. (2) is valid for t > m/b it follows that σx b2 >  /  and 
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σ p mb t b2 4 4= < / / / . Considering now the case of a non-zero temperature, 
the thermalization of the Brownian particle is achieved at t > m/b  indeed but 
quantum relaxations are still in progress since σx

2  is finite. Hence, in this case 
one can propose the following Maxwell-Heisenberg expression for the particle 
momentum dispersion

σ σp B xmk T2 2 24= +  / 	 (3)

which is a superposition between the thermal and quantum components. It is valid 
at high friction only, satisfies the Heisenberg principle at any time and reduces at 
infinite time to the equilibrium results σ p Bmk T2 =  and σx

2 = ∞ . Obviously due 
to quantum effects the momentum relaxation of a quantum Brownian particle is 
non-exponential. The thermo-quantum expression (3) corresponds to continuous 
measurements of the quantum Brownian particle by a thermal dissipative envi-
ronment. Introducing Eq. (3) into the virial theorem σ σp xpb2 =  results after inte-
gration on time in the following generalization of the Einstein law of Brownian 
motion [7]

σ λ σ λx T x T Dt2 2 2 21 2− + =ln( / ) .	 (4)

At large time σx
2  is larger than the thermal de Broglie wave length square 

λT
2  and hence Eq. (4) tends asymptotically to Eq. (1). At short time, however, 

Eq. (4) reduces to Eq. (2), which describes the purely quantum diffusion at zero 
temperature as well.

It is interesting to explore how the classical diffusion equation will change for 
a quantum Brownian particle. Traditionally, the quantum particles are described 
by the Schrödinger equation. In 1927 Madelung has demonstrated [8], however, 
that the Schrödinger equation can be presented in an alternative hydrodynamic 
form

∂ = −∇ ⋅t Vρ ρ( ), m V mV V Ut Q∂ + ⋅∇ = −∇ −∇ ⋅ /ρ ,	 (5)

where r is the probability density, V is the hydrodynamic-like velocity, U is an 
external potential and Q m≡ − ∇⊗∇( / ) ln

2 4 ρ ρ  is a quantum pressure ten-
sor. These Euler equations describe the evolution of the probability density in 
vacuum. In the case of a classical dissipative environment one can enhance the 
dynamic balance (5) by a friction force –bV and thermal pressure tensor k TB ρ  
to obtain the equation m V mV V bV U Q k Tt B∂ + ⋅∇ + = −∇ + +( ln )ρ  [7], where 
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Q m≡ − ∇2 2 2ρ ρ/  is the Bohm quantum potential [9], being related to the 
quantum pressure tensor via the Gibbs-Duhem relation ∇ ⋅ = ∇Q Qρ . Neglecting 
now the inertial terms at strong friction this results in

V U Q k T bB= −∇ + +( ln ) /ρ .	 (6)

Introducing the velocity V from Eq. (6) into the first continuity equation from 
Eqs. (5) yields the following thermo-quantum diffusion equation [7]

∂ = ∇ ⋅ ∇ + + ∇t U Q b Dρ ρ ρ[ ( ) / ] .	 (7)

This is a Smoluchowski equation describing classical diffusion in the fields of 
an external and quantum potentials. The latter is, however, a non-trivial potential 
and depends on the probability density. It is, in fact, a chemical potential originat-
ing from the particle quantum kinetic energy. While the logarithmic term in Eq. 
(6) originates from the Boltzmann entropy, the average value of the quantum po-
tential is proportional to the Fisher entropy. The solution of Eq. (7) for a free par-
ticle is a Gaussian probability density with position dispersion given by Eq. (4).

One of the most interesting quantum phenomena is the tunneling effect. If an 
equilibrium system is considered than V = 0 and Eq. (6) reduces after integration 
to the following differential equation regarding the function lnred

− ∇ − ∇ + = − 

2 2 2 24 8( ln ) / ( ln ) / lnρ ρ ρeq eq B eqm m k T F U .	 (8)

Here the quantum potential is presented in an alternative form and F is the 
constant free energy. This equation provides several important results. In the 
classical limit, for instance, the probability density is the Boltzmann distribution  
red = exp[(F – U) /kBT]. At zero temperature and a strong potential (U > E) the 
second quadratic term in Eq. (8) dominates and thus Eq. (8) provides the well-
known tunneling WKB distribution

ρeq C dx m U E= − −∫exp[ ( ) / ]2 2  ,

where E is the full energy. An interesting new result follows from Eq. (8) for a 
weak potential (U < E) at zero temperature, when the leading term is the first 
one

ρeq C m dx dx U E= −∫∫exp[ ( ) / ]4 2

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Therefore, in case of a general potential the solution of the complete Eq. (8) 
is required.

The dynamics of the tunneling effect can be also described by the Madelung 
hydrodynamics. Neglecting the non-stationary term in the dynamic Eq. (5) and 
integrating the resultant equation yields the stationary hydrodynamic velocity 
V E U Q mx = − −2( ) / . Now introducing it in the first continuity equation from 
Eq. (5) leads to the following equation

∂ = −∂ − −t x E U Q mρ ρ[ ( ) / ]2 	 (9)

describing the dynamics of quantum tunneling as well. The stationary solution of 
Eq. (9) is given by the differential equation

ρ ρ ρst x st stC E U m m= − + ∂/ ( ) / /2 2 2 2
 ,

which in the classical limit reduces to the ergodic distribution ρst C E U m= −/ ( ) /2
, following from the relative time spent at a given position. Substituting of this 
classical distribution in the quantum potential above results in a semiclassical 
stationary distribution

ρst x xC E U m U m E U U m E U= − + ∂ − + ∂ −/ ( ) / / ( ) ( ) / ( )2 4 5 162 2 2 2 2 2 2
  .

Naturally, in the equilibrium case Eq. (9) reduces to Eq. (8) at zero tem-
perature. The effect of temperature and friction on the quantum tunneling can 
be described by the dissipative Madelung hydrodynamics [7] discussed before. 
Moreover, the Madelung hydrodynamic approach provides possibility for study-
ing nonlinear friction [10] and relativistic [11] effects on the quantum tunneling 
as well.

The quantum Smoluchowski equation (7) can be employed also for descrip-
tion of the motion of an electron in a metal under the action of an electric potential 
f. Since at large friction the electron velocity is small the electric potential can be 
described well via the electrostatic Poisson equation

ε ε φ ρ ρ0
2

0∇ = −e( ) ,	 (10)

where e0e is dielectric permittivity and the density r0 of the positive charge in the 
metal is accepted to be constant in the frames of the jelly model. If the electron 
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density r differs slightly from the equilibrium value one can linearize Eq. (7) with 
U = –ef around r0 to obtain

∂ = ∇ ⋅ − ∇ − ∇ + ∇t e b mb Dρ ρ φ ρ ρ( / / )0
2 3 4

.	 (11)

Excluding now the electron density r among the system of linearized quan-
tum Smoluchowski-Poisson equations (10) and (11) leads to a diffusive equation 
for the electric potential

∂ = − + ∇ −∇t D TDφ φ λ λ φ φ( / )2 2 4 2 ,	 (12)

where λ ε ε ρD Bk T e≡ 0
2

0/  is the Debye screening length. Using Eq. (10), Eq. 
(12) can be rewritten for the electron density as well

∂ = − − + ∇ −∇t D TDρ ρ ρ λ λ ρ ρ[( ) / ]0
2 2 4 2 .	 (13)

The Fourier image of the solution of Eq. (13) reads

ρ ρ λ δq D qDt q D q t= − − + −0
2 21[ exp( / )] ( ) exp( ) ,	 (14)

where the effective diffusion coefficient equals to D D q qq D T= + +( / )1 12 2 2 2λ λ .  
For small wave vectors the diffusion is driven mainly by the electrostatics and 
D D q e bqq D≈ =/ /λ ρ ε ε2 2 2

0 0
2 . At large wave vectors the electron is very localized 

and the diffusion is dominated by quantum effects with D D q q mbq T≈ =λ2 2 2 2 4 /
. In the intermediate region of wave vectors the effective diffusion coefficient ex-
hibits a minimum D D bq = + ω0 /  at q D T=1/ λ λ , where the Langmuir plasma 
frequency equals to ω ρ ε ε0

2
0 0= e m/ . Since the Smoluchowski-Poisson problem 

describes also other systems [12], the present analysis is relevant to the signifi-
cance of quantum effects there, for instance, in the self-gravitation.

In the case of Earth gravitation with the constant acceleration g Eq. (7) re-
duces to

∂ = ∂ ∂ − ∂ + ∂τ ζ ζ ζ ζρ ρ ζ α λ ρ ρ ρ{ [ ( ) / ] }2 2 2
T T ,	 (15)

where the classical dimensionless distance ζ ≡ aTz and time τ α≡ D tT
2  with  

aT ≡ mg/kBT are introduced. As is seen the importance of the quantum term in-
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creases by the increase of the ratio of the thermal de Broglie length lT and the 
classical mean barometric height 1/aT. Their equality defines via aTlT = 1 a char-
acteristic temperature T mg kg B= 2 22 23

 / , which is quantum but increases by 
the particle mass m. For electrons, for instance, it equals to Tg = 0.45 nK, which 
corresponds to a macroscopic thermal de Broglie length lTg

 = 0.7 mm. One can 
present generally the solution of Eq. (15) as a sum of the classical barometric dis-
tribution and a quantum correction, r = aTexp(–ζ) + w. If the latter is small one 
can linearize Eq. (15) to obtain

∂ = ∂ − ∂ + ∂ + ∂ + ∂τ ζ ζ ζ ζ ζw w T T w w w wg( / ) ( ) /3 4 3 2 22 3 2 .	 (16)

This equation describes the combined effect of biharmonic, cubic and har-
monic quantum diffusions to the classical Smoluchowski equation, which is 
strongly depressed by the temperature.

Appendix

The aim of this appendix is to draw a simple picture of the quantum Brownian 
motion. Let us have a quantum Brownian particle, which moves in two steps: a 
quantum and a classical one. First, it performs a standard 3D Brownian walk with 
a universal quantum diffusion coefficient ћ/2m [13]. Hence, following Einstein 
we have for the particle dispersion

σ τx m2 =  / , 	 (17)

where t is the duration of this movement. The length of the part drawn by the par-
ticle equals to l = ct, where c is the real velocity of the particle, e.g. c2 = kBT/m. 
Thus, Eq. (17) acquires the form, which is known from the polymer physics as 
well,

σx l mc2 =  / . 	 (18)

Hence, the segment length equals to the de Broglie one, ћ/mc.
Secondly, we put the particle to perform 1D classical Brownian movement 

along the trajectory drawn by the first quantum move. According to Einstein the 
particle will reach the end of the path at time t = l2/D, where D is the usual classi-
cal Einstein diffusion coefficient, e.g. D = mc2/b = kBT/b with b being the particle 
friction coefficient. Substituting l from this relation in Eq. (18) yields
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σx t mb2 =  / . 	 (19)

This expression coincides with Eq. (2) and shows that the quantum particle 
undergoes a usual Brownian motion in a Brownian-fluctuating quantum space. 
This idea is somehow close to the de Broglie pilot-wave, which corresponds to 
the fist quantum move drawing the part, along which the particle to perform the 
second classical Einstein Brownian motion.
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