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Показано е, че Бомовата механика и квантовата хидродинамика на маделунг са 
различни теории и че последната е по-добра онтологична интерпретация на квантовата 
механика. Предложена е нова стохастична интерпретация на квантовата механика, която е 
основа на квантовата хидродинамика на маделунг, и нейната връзка с комплексната механика 
е изследвана също. Предложена е и нова комплексна хидродинамика, в която напълно е 
елиминиран квантовият потенциал на Бом. тя описва квантовата еволюция на плътността на 
вероятността чрез конвективна дифузия с имагинерни коефициенти на пренос.
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it is shown that the Bohmian mechanics and the madelung quantum hydrodynamics are dif-
ferent theories and the latter is a better ontological interpretation of quantum mechanics. A new sto-
chastic interpretation of quantum mechanics is proposed, which is the background of the Madelung 
quantum hydrodynamics. Its relation to the complex mechanics is also explored. A new complex 
hydrodynamics is proposed, which eliminates completely the Bohm quantum potential. It describes 
the quantum evolution of the probability density by a convective diffusion with imaginary transport 
coefficients.
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the copenhagen interpretation of quantum mechanics is guilty for the quan-
tum mystery and many strange phenomena such as the Schrödinger cat, paral-
lel quantum and classical worlds, wave-particle duality, decoherence, etc. Many 
scientists have tried, however, to put the quantum mechanics back on ontologi-
cal foundations. For instance, Bohm [1] proposed an alternative interpretation of 
quantum mechanics, which is able to overcome some puzzles of the Copenhagen 
interpretation. He developed further the de Broglie pilot-wave theory and, for this 
reason, the Bohmian mechanics is also known as the de Broglie-Bohm theory. 
At the time of inception of quantum mechanics Madelung [2] has demonstrated 
that the Schrödinger equation can be transformed in hydrodynamic form. This so-
called madelung quantum hydrodynamics is a less elaborated theory and usually 
considered as a precursor of the Bohmian mechanics. The scope of the present 
paper is to show that these two theories are different and the madelung hydrody-
namics is a better interpretation of quantum mechanics than the Bohmian mechan-
ics. A stochastic interpretation is also developed, which is the background of the 
Madelung quantum hydrodynamics [3].

the evolution of the wave function ψ of a quantum mechanical system con-
sisting of N particles is described by the schrödinger equation

i m Ut ∂ = − ∇ +ψ ψ( / )2 2 2 , (1)

where ∇ is a 3N-dimensional nabla operator and U is a potential. The complex 
wave function can be presented generally in the polar form

ψ ρ= exp( / )iS  , (2)

where ρ ψ= 2  is the N-particles distribution density and S/ћ is the wave function 
phase. Introducing Eq. (2) in the Schrödinger equation (1) results in two equa-
tions

∂ = −∇ ⋅ ∇t S mρ ρ( / ) , (3)

∂ + ∇ + + =t S S m U Q( ) /2 2 0 , (4)

where Q m≡ − ∇ 2 2 2ρ ρ/  is the so-called quantum potential. Bohm [1] has 
noticed that in the classical limit Q vanishes and Eq. (4) reduces to the Hamilton-
Jacobi equation. For this reason, he suggested that S is the mechanical action, 
which is related to the real velocities of the particles via the relation [1]
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R S m= ∇ / . (5)

here R is the 3N-dimensional vector of the particles coordinates. Using expres-
sion (5) and Eq. (4) one can easily derive a quantum Newtonian equation [1]

mR U Q = −∇ +( ) . (6)

this equation hints already inconsistency of the Bohmian mechanics since 
the particles trajectories depend via Q on the probability density to find the par-
ticles at their places, while the logic of a statistical mechanics is just the opposite. 
Hence, the de Broglie-Bohm theory is something like a mean-field approximation 
of the real quantum dynamics. Some authors try to resolve this philosophical dis-
crepancy by reinterpretation of the definition of quantum probability density [4].

Bohm paid much attention to Eq. (4) and less concern about Eq. (3). It is 
easy to check that the solution of the system of Eqs. (3) and (5) is the probability 
density r = d(r – R), which is typical for a deterministic motion described par-
ticularly in the Bohmian mechanics via Eq. (6). This Bohmian distribution cannot 
describe, however, the probability density from the quantum mechanics since its 
dispersion is always zero. Hence, the Bohmian mechanics contradicts to the quan-
tum mechanics. In general any distribution density can be presented in the form  
r = < d(r – R) >, where the brackets indicate statistical average over the realiza-
tions of the particles trajectories. The stochasticity of R could originate either 
from unknown initial conditions, how Bohm proposed [1], or from some inherent 
fluctuations [3]. Taking a time derivative of this expression leads straightforward 
to the continuity equation

∂ = −∇ ⋅t Vρ ρ( ) , (7)

where the 3N-dimensional velocity-vector is given by V R r R≡< − >δ ρ( ) / . This 
hydrodynamic-like velocity obviously is not simply the particles velocity but an 
averaged product representing the flow in the probability space. As seen, Eq. (7) 
is general and not specifically related to the quantum mechanics. Comparing now 
Eq. (3) and Eq. (7) one concludes that S is the hydrodynamic-like velocity poten-
tial, not the mechanical action as suggested by Bohm. Hence, the correct alterna-
tive of Eq. (5) reads

V = ∇S/m. (8)

Let us check now if Eq. (4) can be also explained in this scheme. Using Eq. 
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(8) it can be transformed easily to a macroscopic force balance for the hydrody-
namic-like velocity

m V mV V U Qt∂ + ⋅∇ = −∇ +( ) . (9)

Therefore, Eq. (4) is not a quantum Hamilton-Jacobi equation as Bohm sug-
gested. The system of Eqs. (7) and (9) was proposed for a single particle by Made-
lung [2] first and is known in the Science as the Madelung quantum hydrodynam-
ics. Now the probability density is not driving the individual particles via Q but 
their hydrodynamic-like velocity, which is similar to the thermal diffusion. In the 
latter case the driving force is the gradient of the local Boltzmann entropy, while 
the quantum potential is proportional to the local Fisher entropy [5].

In contrast to the Bohmian mechanics, the Madelung quantum hydrodynam-
ics describes only the averaged statistical characteristics r and V but not the par-
ticles trajectory R. Since the latter is stochastic and the vacuum is a non-dissipa-
tive environment one can propose the following stochastic quantum newtonian 
equation

mR U fQ
 = −∇ + , (10)

where fQ is a random force originating from some vacuum fluctuations [3]. Its 
average value is zero to satisfy the Ehrenfest theorem. According to the modern 
physics all the interaction in the world are mediated by virtual particles and Eq. 
(10) states that the latter behave randomly as well. The quantum potential is the 
macroscopic image of the microscopic force fQ. Hence, in a mean-field approach 
one can replace fQ  by –∇Q to get Eq. (6). The phase-space probability density can 
be generally presented via W p mR r R≡< − − >δ δ( ) ( ) . Differentiating W in time 
and expressing the particles acceleration from Eq. (10) yields

∂ + ⋅∇ −∇ ⋅∂ + ∂ ⋅ < − − >=t p p QW p W m U W f p mR r R/ ( ) ( )δ δ 0 . (11)

In the classical limit the last quantum term vanishes and Eq. (11) reduces to 
the Liouville equation. If one assumes now that the unspecified quantum force 
term is given by

< − − >= −
+

∇ ⋅∂+
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∞

∑f p mR r R i
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Eq. (11) becomes the Wigner-Liouville equation [6], from which the Mad-
elung quantum hydrodynamics can be deduced straightforward [7]. According to 
Eq. (12) the quantum stochastic force is not correlated to the particle position 
since <fQd(r – R)> = 0. One of the advantages of the Bohmian mechanics is a dem-
onstration of quantum non-locality, which is due to the fact that Q is a function of 
the positions of all the particles in the system. At a first look Eq. (10) seems local 
and one could pretend that it violates the Bell theorem. However, the stochastic 
forces acting on different particles are obviously correlated since the same quan-
tum potential appears in the non-local Madelung hydrodynamics as well. Hence, 
the present stochastic interpretation does not only reproduce the quantum non-lo-
cality but shows the physical reason for the entanglement: the spatial correlations 
of the vacuum fluctuations.

an alternative way to describe the present stochastic quantum dynamics is 
the complex mechanics [8, 9]. According to this theory quantum particles obey 
also the newtonian equation mZ U Z = −∇ ( )  but their coordinates Z(t) are com-
plex functions. The real part R = Zre represents the observable physical trajecto-
ries. Since the initial value of the metaphysical imaginary part Zim is unknown, 
the complex mechanics description possesses a stochastic character. For instance, 
the effect of vacuum fluctuations can be attributed to Zim. It is easy to show that 
the phase-space probability density W obeys in complex mechanics the Liouville 
equation

∂ + ⋅∇ − ∂ ⋅ < ∇ + − − >=t pW p W m U r iZ p mR r R/ Re[ ( )] ( ) ( )Im δ δ 0 . (13)

Expanding now the potential energy U in a power series of the imaginary part 
Zim one can rewrite Eq. (13) in the more decisive form

∂ + ⋅∇ − ∂ ⋅ ∇ ⋅ < − − > =+

=

∞

∑t p
k k

k
W p W m

k
U iZ p mR r R/

!
( ) ( ) ( )Im

1
2

02 1 2

0

δ δ  (14)

Thus, an alternative expression for the fluctuation force term from Eq. (11) 
reads

< − − >= − ∇ ⋅ < − − >+

=

f p mR r R
k

U iZ p mR r RQ
k k

k
δ δ δ δ( ) ( )

!
( ) ( ) ( )Im
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∞∞

∑  (15)

The structure of this equation is similar to Eq. (12). Hence, by proper model-
ing of the statistical properties of Zim  one could derive the Wigner-Liouville equa-
tion, i.e. the quantum mechanics.
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an interesting alternative of the madelung quantum hydrodynamics is the 
complex hydrodynamics with an irrotational complex hydrodynamic velocity

ω ψ ρ≡ ∇ = + ∇i m V i m ln / ln / 2  (16)

introduced via the quantum momentum operator [8]. Substituting this expression, 
the continuity Eq. (7) changes to a complex convective diffusion equation

∂ +∇ ⋅ = ∇t Dρ ρω ρ( ) 2  (17)

with imaginary diffusion coefficient D i m≡  / 2 . The latter is well-known in 
the physical literature [10, 11], since the Schrödinger equation for a free particle  
∂tψ = D∇2ψ formally coincides with a diffusion equation. Using further Eq. (16), 
the Madelung hydrodynamic force balance (9) acquires the form of a complex 
Navier-Stokes equation

∂ + ⋅∇ = −∇ + ∇t U mω ω ω ν ω/ 2   (18)

with constant pressure and kinematic viscosity ν ≡ −i m / 2 . Thus, the weird 
quantum potential disappears completely and, hence, the Schrödinger equation re-
duces to classical diffusion and hydrodynamics but with complex transport coeffi-
cients. As is seen, the vacuum possesses purely imaginary diffusion and viscosity 
constants. They are complex-conjugated and their geometrically averaged value 
νD m=  / 2  equals to the Nelson universal diffusion constant [12]. Equations 

(17) and (18) open also a door to dissipative quantum mechanics [3] via including 
real parts of the complex transport coefficients as well.

The inconsistency of the Bohmian mechanics could be elucidated on the ex-
ample of the classical Brownian motion, where the particles motion is described 
by the Langevin equation [13]

mR bR U fL
 + = −∇ + . (19)

here b is the friction coefficient and fL is the stochastic Langevin force. Following 
Eq. (19) the probability density evolution is governed by two hydrodynamic-like 
equations [3]

∂ = −∇ ⋅t Vρ ρ( ) , m V mV V bV U k Tt B∂ + ⋅∇ + = −∇ +( ln )ρ  (20)

Hence, according to thermodynamics the macroscopic image of the Langevin 



118

force is the gradient of the thermal free energy. Using Eq. (8) these equations can 
be easily transformed to

∂ = −∇ ⋅ ∇t S mρ ρ( / ) , ∂ + ∇ + + = −t BS S m U k T bS m( ) / ln /2 2 ρ . (21)

Following the Bohm logic, one can interpret the second equation as a dis-
sipative thermal Hamilton-Jacobi equation, where the thermal chemical potential 
plays the role of Q. Employing now the de Broglie-Bohm guiding equation (5) 
one can derive a thermal newtonian equation

mR bR U k TB
 + = −∇ +( ln )ρ  (22)

being analogical of Eq. (6). Obviously Eq. (22) is not correct. It represents a 
mean-field deterministic approximation of the real stochastic Brownian dynamics 
rigorously described by Eq. (19). The main philosophical problem of the Bohmian 
mechanics is that it considers the quantum mechanics as a classical one, while it 
is, in fact, a kind of statistical mechanics.

Finally, in the case of the quantum Brownian motion both the quantum and 
Langevin stochastic forces are simultaneously acting and Eq. (19) advances to 
[3]

mR bR U f fQ L
 + = −∇ + + . (23)

In the case of Bohmian approximation, one can replace the quantum stochas-
tic force in Eq. (23) by the Bohm quantum force –∇Q to obtain a density func-
tional Bohm-Langevin equation [14]

mR bR U Q fL
 + = −∇ + +( ) . (24)
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