EXAM TOPICS

for PhD applicants in study direction 4.1 (AMO Physics)

I. Quantum Optics and Quantum Information Theory

- 1. Quantum linear harmonic oscillator
- 2. Potential well and potential barrier. Tunneling. Reflection and transmission coefficients.
- 3. Angular momentum in quantum mechanics. Addition of angular momenta. Spin.
- 4. Magnetic moment: orbital and spin. Stern-Gerlach effect.
- 5. Hydrogen atom. Spectrum and wavefunctions.
- 6. Two-body problem in quantum mechanics.
- 7. Time-independent perturbation theory. Zeeman effect.
- 8. Time-dependent perturbation theory. Two-level system. Rotating wave approximation. Rabi oscillations.
- 9. Identical particles. Pauli principle. Helium atom.
- 10. Adiabatic evolution. Avoided and unavoided crossings. Landau-Zener model.
- 11. Three-level systems. Dark states. Stimulated Raman adiabatic process (STIRAP).
- 12. Degenerate systems. Morris-Shore transformation.
- 13. Density matrix. Liouville von Neumann equation. Bloch sphere and Bloch vector. Spontaneous emission in dephasing processes.
- 14. Electromagnetically induced transparency, 'slow' and 'fast' light. Lasing without inversion.
- 15. Relativistic quantum mechanics. Klein-Gordon equation. Klein paradox. Dirac equation.

LITERATURE:

- 1. A. Donkov and M. Mateev, Quantum Mechanics (Sofia University Press, 2010, Sofia).
- 2. B.W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990).
- 3. L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1987).
- 4. N. V. Vitanov, Quantum Transitions (Sofia University Press, 2010, Sofia).

II. AMO physics

- 1. Electron spin. Spin-orbit coupling. Fine structure in the spectra of alkali metals.
- 2. Electronic structure of the Helium atom.
- 3. Nuclear spin. Hyperfine structure. Example: Rb atom
- 4. Atomic spectra. Transition probability. Selection rules
- 5. Zeeman effect. Stark effect.
- 6. Interaction between two neutral atoms at large inter-nuclear distances. Dispersion coefficients C3, C5, C6.
- 7. Diatomic molecules. Born-Oppenheimer approximation. Potential energy curves.
- 8. Classification of electron states in diatomic molecules.
- 9. Homonuclear and heteronuclear molecules.
- 10. Vibrational and rotational structure in diatomic molecules.
- 11. Molecular spectra. Selection rules. Franck-Condon principle.
- 12. Electron spectra. Vibrational and rotations spectra.
- 13. Physical vacuum. Lifetime of atomic states. Lamb shift.
- 14. Elementary dispersion elements: prism, diffraction grating, interference filer. Spectrographs and monochomator gratings. Basic theory and applications.
- 15. Interferometers: Mach-Zehnder, Michelson, Fabry-Pérot. Comparison between planar and confocal Fabry-Pérot interferometers.
- 16. Detectors: photomultiplier, photodiode, avalanche photodiode. Basic theory and circuits.
- 17. Lasing. Active media with three and four energy levels. Modes of laser radiation.
- 18. Tuneable lasers. Selective resonators with prisms, diffraction gratings, etalons. Single mode generation selection of single longitudinal mode.
- 19. Main characteristics of gas (He-Ne, Ar+), solid state (Nd:YAG, Ti:Al2 O3), dye and semiconductor lasers.
- 20. Width and profile of spectral lines. Homogenous broadening. Doppler broadening. Voight profile. Collisional and saturation broadening.
- 21. Absorption laser spectroscopy. Laser-induced fluorescence.
- 22. Optogalvanic spectroscopy.
- 23. Saturation laser spectroscopy. Polarization spectroscopy.

LITERATURE:

- L.D.Landau and E.M.Lifshitz Quantum mechanics. Nonrelativistic theory, 1977 Elsevier
- P.Bernath Spectra of atoms and molecules, Oxford 1995
- G. K. Woodgate, Elementary atomic structure, Oxford 2002
- C. Herzberg, Molecular spectra and molecular structureSpectra of diatomic molecules, Van Nostrand, New York 1995.
- W. Demtroder, Laser Spectroscopy, Basic Concepts and Instrumentation, Springer-Verlag, Berlin 1996
- O. Zvelto, Principles of Lasers, Springer 2010

III. AMO physics (interactions with biological systems)

- 1. Basic notions of Quantum Mechanics. Uncertainty principle. Superposition principle. Operators.
- 2. Schrödinger equation. One-dimensional potential well. Harmonic oscillator.
- 3. Angular momentum. Matrix elements and eigendecomposition of the angular momentum operator.
- 4. Hydrogen atom. Schrödinger equation in a central potential. Classification of energy levels.
- 5. Time-independent perturbation theory.
- 6. Variational principle.
- 7. Electron spin. Spin-orbit interaction.
- 8. Atomic spectra. Transition probability. Selection rules.
- 9. Multi-electron system. Thomas-Fermi model.
- 10. Hartree-Fock method.
- 11. Density functional theory. Hohenberg-Kohn theorem.
- 12. Kohn-Sham equation
- 13. Local density approximation.
- 14. Diatomic molecule. Vibrational and rotations structure of the diatomic molecule.
- 15. Molecular spectra. Selection rules.
- 16. Born-Oppenheimer approximation. Basic notion in molecular dynamics.
- 17. Ergodicity theorem. Molecular dynamics in the microcanonical ensemble.
- 18. Molecular dynamics in other statistical ensembles.

LITERATURE:

A. Donkov and M. Mateev, Quantum Mechanics (Sofia University Press, 2010, Sofia).

Parr, RG; Yang, W (1989). Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press.

Daan Frenkel, Berend Smit, Understanding Molecular Simulation: From Algorithms to Applications, Computational Science Series, Vol1, Academic Press 2001.

IV. Quantum Many-Body Physics

- 1. Quantum linear harmonic oscillator: spectrum, wavefunctions, creation and annihilation operators.
- 2. Hydrogen atom. Spectrum and wavefunctions.
- 3. Time-independent perturbation theory. Zeeman effect.
- 4. Time-dependent perturbation theory. Two-level system. Rotating wave approximation. Rabi oscillations.
- 5. Adiabatic evolution. Avoided and unavoided crossings. Landau-Zener model.
- 6. Density matrix. Liouville von Neumann equation. Bloch sphere and Bloch vector.
- 7. Angular momentum in quantum mechanics. Addition of angular momenta. Spin.
- 8. Identical particles. Pauli principle. Bose-Einstein and Fermi-Dirac distributions.
- 9. Ideal Bose and Fermi gases: partition function, free energy, heat capacity.
- 10. Ensemble theory: microcanonical, canonical and grand canonical ensemble. Partition function, free energy and heat capacity of coupled harmonic oscillators in one dimension.
- 11. Bose-Einstein condensation: equation of state, critical temperature.
- 12. Weakly-interacting bosons: Gross-Pitaevski equation, Bogoliubov transformation, Bogoliubov spectrum and quasiparticles, superfluid phase.
- 13. BCS theory of superconductivity: (s-wave) pairing function, gap equation, critical temperature; superconducting phase.
- 14. Transverse-field Ising model: exact solution and Jordan-Wigner transformation, spectrum, quantum phase transitions, (anti-)ferromagnetic and paramagnetic phases.

LITERATURE:

- 1. J. J. Sakurai and E. D. Commins, *Modern Quantum Mechanics, Revised Edition*, (American Association of Physics Teachers, 1995).
- 2. R. K. Pathria and P. D. Beale, Statistical Mechanics, (Taylor & Francis 2011).
- 3. Bipin R. Desai, *Quantum Mechanics with Basic Field Theory*, (Cambridge University Press).
- 4. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge 2001).

Prepared by:

Prof. Dr. N. V. Vitanov

Prof. Dr. A. Pashov

Prof. Dr A. Proykova

Assoc. Prof. Dr. P. Ivanov

Marin Bukov, PhD