Multi-Physics of Nuclear Reactors

This course is focused on reactor multi-physics methods and techniques for multi-dimensional reactor analysis. It consists of five major topics: fundamentals of reactor multi-physics; short-time multiphysics phenomena in nuclear reactor cores; simplified multi-physics modeling; traditional multiphysics modeling; and novel multi-physics modeling. The theory lectures and assignments will be complemented with demonstration exercises and examples.

16 hours (within 3-4) days

By the end of the course, the students would be able to: (1) Understand multi-physics interactions in reactor systems; (2) Define and classify time phenomena in nuclear reactors; (3) Differentiate between prompt and delayed neutron behavior; (4) Explain feedback mechanisms; (5) Apply space-time multi-physics methods; (6) Interpret verification and validation techniques for multi-physics simulations and uncertainty quantification in multi-physics modeling.

• Course Objectives

By the end of this course, the student should be able to understand and apply the concepts and principles of:

- Multi-Physics Interactions in Reactor Systems;
- Time Phenomena in a Nuclear Reactor;
- Prompt and Delayed Neutron Behavior;
- Feedback Mechanisms;
- Space-Time Multi-Physics Methods;
- Verification and Validation of Multi-Physics Simulations;
- Uncertainty Quantification in Multi-Physics Modeling.

• Course Requirements

In class quizzes: five quizzes Homework: three assignments.

Required Textbook

No required textbook; class-notes and reading material will be provided.

• Reference Textbooks

- 1. K. Ott and R. Neuhold, Introductory Nuclear Reactor Dynamics, American Nuclear Society, 1985 (ISBN: 0-894-48029-4) or any new edition of this book
- W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001 (ISBN: 0- 471-39127-1) or any new edition of this book

• Instructors

Dr. Maria Avramova, Professor Dr. Kostadin Ivanov, Professor

Multi-Physics of Nuclear Reactors COURSE OUTLINE

Topic # 1	- Introduction & Fundamentals of Reactor Multi-Physics	Assignments
Lecture 1	Multi-Physics of Nuclear Reactors	
(L1)	Basic Topics and Nomenclature	
	Time-Dependent Phenomena in Nuclear Reactors	
	Multi-Physics Interactions in Reactor Core	
	Classification of Multi-Physics Modeling and Simulation Tools	
Topic # 2	- Short-Time Multi-Physics Phenomena in Reactor Core	
L2	Dynamic Equation & Simplified Neutron Cycle	Quiz #1
	Prompt and Delayed Neutrons	
	Total Delayed Neutron Yields & Yields of Delayed Neutron Groups	
	Emission Spectra of Delayed Neutrons	
	Theoretical Background for Calculation of Kinetics Data	
L3	Preliminary Formulation of the Point Kinetics:	Quiz #2
	Prompt Neutron Balance Equation	Homework 1 (HW1)
	Intuitive Point Kinetics Equation	
	One-Group Point Kinetics Equation	
	Reactivity in the Exact PKEs; Effective Delayed Neutron Fractions	
	Point Reactor Model	
L4	Prompt Reactivity Feedback Phenomena: Core Power Models and Fuel	Quiz #3
	Temperature Calculations	
	Prompt Reactivity Feedback Phenomena: Transient at Small Times	
	Prompt Reactivity Feedback Phenomena: Asymptotic Transients	
L5	Super prompt-Critical Excursion Following Step Reactivity Insertion	HW2
	Super prompt-Critical Excursion Following Ramp Reactivity Insertions	
L6	Delayed Reactivity Feedback Phenomena: Moderator / Coolant	
	Feedback Effects	
	Reactor Noise and Instabilities; General Reactor Stability	
Topic # 3	– Simplified Multi-Physics Modeling	
L7	Pre-Traditional Multi-Physics Coupling Schemes	HW3
	Thermal-Hydraulics Codes with Point Kinetics Models	
L8	Neutronics Core Simulators with 1-D Thermal-Hydraulics Models	
	Neutronics and Thermal-Hydraulics Models in Fuel Performance Codes	
Topic # 4	- Traditional Multi-Physics Modeling	
L9	3D Nodal Kinetics Models in Thermal-Hydraulic Analysis	Quiz #4
L10	Heat Conduction and Fuel Rod Modeling in Subchannel and System	
	Thermal-Hydraulic Codes	
L11	Space-Energy Dependent Dynamics: General Discussion of the Dynamics	
	Problem; Flux Factorization	
L12	Space-Energy Dependent Dynamics: Quasi-Static Methods	Quiz #5

	& Dynamic Reactivity Coefficients		
L13	Coupled Thermal-Hydraulics and Neutronics Simulations		
Topic # 5 – Novel Multi-Physics Modeling			
L14	High-Fidelity Neutronics, Thermal-Hydraulics and Fuel Performance models; Feedback Parameters		
L15	Spatial & Temporal Coupling - Multi-Physics Platforms		
L16	Verification and Validation of Multi-Physics Simulations Uncertainty Quantification in Multi-Physics Modeling		