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Abstract

It is well known, that the structure of atoms and molecules undergoes a transformation

when exposed to interaction with radiation. Different types of radiation cause different types

of evolution. The branch of physics, which deals with interaction between matter and coherent

field is called coherent control. By using coherent radiation, one has a great level of control of the

evolution of the quantum system. Coherent control allows preparation of atoms and molecules

in specified quantum states, as well as different schemes for navigation in Hilbert state. This

is a requirement in many areas of contemporary physics, for instance laser-controlled chemical

reaction, isotope separation, atom optics. Recently, with the growing interest in quantum

information science, coherent control is used as a tool for initialization, processing and read-out

of the information, measured in qubits.

This thesis studies some of the basic principles underlying the evolution of simple quantum

systems, interacting with coherent field. Techniques for navigation in Hilbert space are also

described, as well as some applications in quantum computing, allowing preparation of specific

gates and quantum algorithms.
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Chapter 1

Introduction

The present chapter introduces the basic theory of light- atom interaction for two-state atom

(e.g two-state system), as governed by the time dependent Scrödinger equation.

1.1 The Schrödinger equation

The coherently driven two-state quantum system is a fundamental object in quantum physics.

In many experiments a two-state transition suffices to describe the essential changes in the

internal state of a quantum system subjected to a generally time-dependent external field.

Moreover, when multiple states are involved, the quantum dynamics can usually be understood

only by reduction to an effective two-state dynamics.

The time evolution of a coherently driven two-state quantum system is described by the

Schrödinger equation

i~
d

dt
c(t) = H(t)c(t), (1.1)

where c(t) = [c1(t), c2(t)]
T is the column-vector with the probability amplitudes of the two states

ψ1 and ψ2, while H(t) is the Hamiltonian of the atom-radiation system. The diagonal elements

of H(t) are the unperturbed energies of the two states E1 and E2, and the off-diagonal elements

contain the laser-atom dipole interaction energy. Because the populations Pn(t) = |cn(t)|2
depend only on the magnitudes of the probability amplitudes, there is some leeway in choosing

the phases of these. It proves particularly convenient to incorporate the state energies as

phases. Then the off-diagonal element of the Hamiltonian matrix, which is proportional to the

sinusoidally oscillating laser electric feld, is multiplied by a phase factor oscillating at the Bohr

transition frequency ω0 = (E2 −E1)/~. Because the laser frequency ω is equal or very close to

the transition frequency ω0, the off-diagonal Hamiltonian element can be represented as a sum

of two terms: one term oscillating rapidly at nearly twice the transition frequency (ω0 +ω), and

1
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another term oscillating slowly at frequency ∆ = ω0 − ω, the atom-laser detuning. Neglecting

the rapidly oscillating term is known as the rotating-wave approximation (RWA) [1]. Under

this approximation, the Schrödinger equation reads

i
d

dt
c1(t) =

1

2
Ω(t)e−iD(t)c2(t), (1.2a)

i
d

dt
c2(t) =

1

2
Ω∗(t)eiD(t)c1(t), (1.2b)

where D =
∫ t

0
∆(t′)dt′. The coupling Ω(t) = −d ·E(t)/~ is the so called Rabi frequency, where

d is the transition dipole moment and E(t) is the laser electric-field envelope.

Another useful representation of the Schrödinger equation, which we shall use throughout

the thesis, is obtained from Eqs. (1.2) after a simple phase transformation

c(t) →

 e−iD(t)/2 0

0 eiD(t)/2


 c(t). (1.3)

In this new picture, the Schrödinger equation reads

i
d

dt
c(t) = 1

2


 −∆(t) Ω(t)

Ω(t) ∆(t)


 c(t). (1.4)

The evolution of the probability amplitudes is usually described by the evolution matrix U,

also called propagator of the system, defined as

c(tf ) = U(tf , ti)c(ti). (1.5)

It is a unitary matrix, which allows us to calculate the amplitudes at a time tf , if we know

them in the initial moment ti.

The coherent two-state dynamics is extensively studied, particularly in relation to coherent

atomic excitation [1], nuclear magnetic resonance [2], and most recently, as a qubit for quantum

information processing [3, 4]. On exact resonance, when the frequency of the driving field is

equal to the Bohr transition frequency, the Schrödinger equation is solved exactly, for any

time dependence of the coupling Ω(t) (the Rabi frequency), and the transition probability P

depends on the pulse area A =
∫∞
−∞ Ω(t)dt only, P = sin2 (A/2). Of particular use are the

π pulses (A = π or odd-multiple of π), which produce complete population inversion (CPI)

between the two states, 2π pulses (A = 2π or even-multiple of π), which produce complete

population return (CPR), and half-π pulses (A = π/2 or half-integer-multiple of π) that create

an equal coherent superposition of the two states.

There are several exactly soluble non-resonant two-state models, including the Rabi [5],

Landau-Zener [6], Rosen-Zener [7], Allen-Eberly [8, 9], Bambini-Berman [10], Demkov-Kunike
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[11], Demkov [12], Nikitin [13], and Carroll-Hioe [14] models. Methods for approximate solutions

are also available, such as the perturbation theory and the adiabatic approximation. Adiabatic

evolution is of particular interest, because, when accompanied with an energy level crossing,

it leads to CPI — usually referred to as rapid adiabatic passage [8, 15]. Noncrossing energies

produce no excitation in the end of adiabatic evolution, i.e., CPR.

Analytical solutions — exact or approximate — allow one to design simple recipes for

control of the transition probability, and more generally, of the entire two-state propagator.

The traditional control parameters are the pulse area, the static detuning and the frequency

chirp.

1.2 Exactly soluble models

In this section we will briefly review some of the most popular exactly soluble two-state quantum

models, which we shall use throughout the thesis.

1.2.1 Rabi model

One of the simplest exactly soluble models is the Rabi model [5]. In this model, it is assumed

that the Rabi frequency and the detuning are both constant in time:

Ω(t) = Ω0, ∆(t) = ∆0. (1.6)

The solution of the Schrödinger equation (1.4) for this model is straightforward and the elements

of the propagator read:

U(t, 0) =


 a −b∗

b a∗


 , (1.7)

where

a = cos

(√
Ω2

0 + ∆2
0

2
t

)
+ i

∆0√
Ω2

0 + ∆2
0

sin

(√
Ω2

0 + ∆2
0

2
t

)
, (1.8)

b = −i
Ω0√

Ω2
0 + ∆2

0

sin

(√
Ω2

0 + ∆2
0

2
t

)
. (1.9)

1.2.2 Landau-Zener model

In the Landau-Zener model [6] the coupling and the detuning are given by

Ω(t) = Ω0, ∆(t) = A2t, (1.10)



1.2. Exactly soluble models 4

where Ω0 and A (not to be confused with the pulse area) are positive constants. In the case

when the coupling has a finite duration the solution is given in terms of Weber’s parabolic

cylinder functions, and it is discussed in Chapter 5. However, in the case in which the duration

lasts for infinite time, the solution is simple and the propagator is easily parameterized:

U(∞,−∞) =




√
P

√
1− Peiφ

−√1− Pe−iφ
√

P


 , (1.11)

where

P = e−πΛ/2, (1.12)

φ = 1
2
τ 2 + 1

4
Λ ln τ 2 − 3

4
π + arg Γ(1− 1

4
iΛ), (1.13)

Λ =
Ω2

0

A2
, τ = τf = −τi, τi = Ati, τf = Atf . (1.14)

1.2.3 Demkov-Kunike model

The Demkov-Kunike model [11] assumes a hyperbolic-secant pulsed interaction and detuning,

which has a static component and a hyperbolic-tangent chirp:

Ω(t) = Ω0 sech(t/T ), ∆(t) = ∆0 + B tanh(t/T ), (1.15)

where Ω0, ∆0, B and T are assumed positive without loss of generality. In this case, it is

more convenient to work in the interaction representation (1.2). We make a simple variable

transformation z(t) = [1 + tanh(t/T )]/2 and introduce the dimensionless parameters

α =
Ω0T

2
, β =

BT

2
, δ =

∆0T

2
. (1.16)

The solution for the propagator is expressed in terms of the Gauss hypergeometric function

F (λ, µ; ν; z):

U11(z, 0) = U22(z, 0)∗ = F (λ, µ; ν; z), (1.17a)

U21(z, 0) = −U12(z, 0)∗ = −i
α

ν
2−2iβzν(1− z)1−ν−2iβF (1 + λ, 1 + µ; 1 + ν; z), (1.17b)

where

λ =
√

α2 − β2 − iβ, (1.18a)

µ = −
√

α2 − β2 − iβ, (1.18b)

ν =
1

2
+ i (δ − β) . (1.18c)

In the case of interaction which lasts from t → −∞ to t → ∞ the hypergeometric functions

reduce to simpler Gamma functions. The Demkov-Kunike model, as well as its special cases,

the Allen-Eberly, Rosen-Zener and Bambini-Berman models, will be examined in more details

in Chapter 4.
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1.2.4 Carroll-Hioe model

Another exactly soluble model, which we consider in this thesis, is the Carroll-Hioe model [14].

The coupling and detuning in this model are

Ω(t) = Ω0 sech(t/T ), ∆(t) = B tanh(t/T ) + S0 sech(t/T ). (1.19)

The exact solution for this model is derived in Appendix A.4 in the general case to take into

account losses of population out of the system.

1.3 Structure of the thesis

The present thesis studies different aspects of the light-matter interaction and considers specific

applications. The thesis is organized as follows.

In Chapter 2 we analyze the effects of laser-induced Stark shift and irreversible population

loss on the technique of chirped-frequency adiabatic passage, and the ensuing symmetries and

asymmetries in the ionization and fluorescence signals. We find that the properties of the

detection signal depend critically on the fashion in which it is collected: for example, the post-

pulse populations of the ground and excited states, and the ionization signal collected during

the excitation, possess different symmetry properties with respect to the frequency chirp rate

and the static frequency detuning. We illustrate these features with two exactly soluble analytic

models, which describe simultaneous excitation and ionization of a two-state quantum system,

as it typically occurs in atomic excitation with femtosecond laser pulses. We find that the

ionization signal may exhibit unexpected oscillations and derive the conditions for maximizing

their contrast.

Chapter 3 analyzes the accuracy of the adiabatic-elimination approximation for calculating

the acquired phases, caused by far-off-resonant pulsed laser fields. In this chapter we derive

the conditions for the applicability of this approximation to the calculation of the phases.

We account for various sources of imperfections, ranging from higher terms in the adiabatic-

elimination expansion and irreversible population loss to couplings to additional states. We find

that, as far as the phase shifts are concerned, the adiabatic elimination is accurate only for a

very large detuning. We show that the adiabatic approximation is a far more accurate method

for evaluating the phase shifts, with a vast domain of validity; the accuracy is further enhanced

by superadiabatic corrections, which reduce the error well below 10−4. Moreover, owing to the

effect of adiabatic population return, the adiabatic and superadiabatic approximations allow

one to calculate the phase shifts even for a moderately large detuning, and even when the

peak Rabi frequency is larger than the detuning; in these regimes the adiabatic elimination is



1.3. Structure of the thesis 6

completely inapplicable. We also derive several exact expressions for the phases using exactly

soluble two-state and three-state analytical models.

In Chapter 4 we present an analytically exactly soluble two-state model, in which a hyperbolic-

secant-shaped pulsed interaction has a phase jump of φ at the time of its maximum. The

detuning has a constant part and a hyperbolic-tangent chirp term. For φ = 0, this model

reduces to the Demkov-Kunike model, which in turn contains as particular cases three other

well-known models: the Rosen-Zener, Allen-Eberly and Bambini-Berman models. A nonzero

φ induces dramatic changes in the transition probability, ranging from complete population

inversion to complete population return. The analytic results are particularly instructive in

the adiabatic limit and demonstrate that complete population inversion can always occur for

a suitable choice of φ. The jump phase φ can therefore be used as a control parameter for the

two-state transition probability.

Chapter 5 presents a class of exact analytic solutions of the time-dependent Schrödinger

equation for a two-state quantum system coherently driven by a nonresonant external field.

The coupling is a linear function of time with a finite duration and the detuning is constant.

Four special models are considered in detail, namely the shark, double-shark, tent and zigzag

models. The exact solution is derived by rotation of the Landau-Zener propagator at an angle

of π/4 and is expressed in terms of Weber’s parabolic cylinder function. Approximations for the

transition probabilities are derived for all four models by using the asymptotics of the Weber

function; these approximations demonstrate various effects of physical interest for each model.

Chapter 6 introduces a technique which allows one to connect any two arbitrary (pure or

mixed) superposition states of an N -state quantum system. The proposed solution to this

inverse quantum mechanical problem is analytical, exact and very compact. The technique

uses standard and generalized quantum Householder reflections (QHR), which require external

pulses of precise areas and frequencies. We show that any two pure states can be linked by

two standard QHRs, or by only one generalized QHR. The transfer between any two mixed

states with the same dynamic invariants (e.g., the same eigenvalues of the density matrix ρ)

requires in general N QHRs. Moreover, we propose recipes for synthesis of arbitrary preselected

mixed states, starting in a single basis state and using a combination of QHRs and incoherent

processes (pure dephasing or spontaneous emission).

In Chapter 7, we propose a technique for design of quantum Fourier transforms, and ensuing

quantum algorithms, in a single interaction step by engineered Hamiltonians of circulant sym-

metry. The method uses adiabatic evolution and is robust against fluctuations of the interaction

parameters as long as the Hamiltonian retains a circulant symmetry.



Chapter 2

Symmetries and asymmetries in

coherent atomic excitation by chirped

laser pulses

Coherent excitation of a two-state atom by a laser pulse is usually associated with symmetric

excitation profiles [1], i.e. the excitation probability is a symmetric (even) function of the

detuning ∆ and the chirp rate C. When multiple states are involved, there is always a multitude

of (often interfering) excitation pathways, and a change of sign in the detuning or the chirp of

the excitation pulse (or pulses) makes the system follow a different path in Hilbert space, and

arrive at a different outcome. A two-state system, however, is too simple in this respect for it

has only one transition path ψ1 ↔ ψ2, from which the symmetry of the excitation probability

P1→2 with respect to ∆ and C usually, but not always, follows. Symmetries of this sort can

be broken, for example, by the presence of dynamic Stark shifts and population losses (e.g.,

ionization) induced by the excitation pulse.

In this chapter we examine in some detail the sources of asymmetries in the two-state

excitation profiles. We find that the properties of the detected signal depend significantly on its

nature: for example, the post-pulse populations of the ground and excited states (probed, e.g.,

by subsequent laser-induced fluorescence or ionization) and the ionization signal accumulated

during the excitation display different symmetry properties with respect to the frequency chirp

and the detuning. To this end, we use two analytically exactly soluble models, which extend

the analytic models of Demkov-Kunike [11] and Carroll-Hioe [14] to complex detuning, which

is needed to model simultaneous excitation and population loss. These models allow us to

describe the effects of laser-induced Stark shift and irreversible population loss (spontaneous

emission, ionization, etc.) upon chirped adiabatic passage techniques; these effects become

7
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significant in strong-field atomic excitation by ultrashort (picosecond and femtosecond) laser

pulses [16–19].

The chapter is organized as follows. We introduce the model physical system in Sec. 2.1.

The two-state symmetries and asymmetries are described in Sec. 2.2. The analytic models are

presented and discussed in Sec. 2.3. The conclusions are summarized in Sec. 2.4.

2.1 Model physical system

2.1.1 Two-state system

Our model system comprises two states, ground ψ1 and excited ψ2, the transition between

which is driven by an external coherent field. The evolution of this system is described by the

Schrödinger equation [1]. The Hamiltonian in the rotating-wave approximation reads

H(t) = ~


 0 1

2
Ω(t)

1
2
Ω(t) ∆(t)− 1

2
iΓ(t)


 , (2.1)

where Γ(t) describes irreversible loss of population. The detuning ∆(t) is real and may have

an arbitrary time dependence, which may occur through temporal variation of either the laser

frequency ω(t) (by frequency chirping) or the atomic transition frequency ω0(t) (by using con-

trolled Stark or Zeeman shifts induced by time-varying electric or magnetic fields). The Rabi

frequency Ω(t) quantifies the field-induced coupling between the two states. For single-photon

electric-dipole excitation, we have Ω(t) = −d · E(t)/~. For two-photon excitation, the Rabi

frequency is proportional to E2(t). This follows from the fact that such processes correspond

to second-order terms in perturbation theory [1]. The Rabi frequency Ω(t) is assumed real,

positive and pulse-shaped. The irreversible-loss rate Γ(t) is real and positive and may be con-

stant or pulse-shaped. The latter situation, of pulse-shaped Γ(t) occurs, for instance, when the

driving pulse, while acting upon the transition ψ1 ↔ ψ2, simultaneously ionizes the population

of the excited state ψ2; this typically occurs in excitation by femtosecond laser pulses.

We shall be concerned with excitation of a two-state atom by a single intense laser pulse,

which may have the following simultaneous actions: (i) excite the transition ψ1 ↔ ψ2; (ii) ionize

the population from state ψ2 with a rate Γ(t); (iii) induce dynamic Stark shifts caused by the

presence of the other, far off-resonance states in the atom. Let the time dependence of the

laser electric field be described by the function f(t); hence the laser intensity is I(t) = I0f(t)2.

Then the Rabi frequency Ω(t) will be proportional to either f(t) or f(t)2, whereas the dynamic

Stark shift S(t) and the ionization rate Γ(t) (for one-photon ionization) are both proportional
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to f(t)2,

Ω(t) =





Ω0f(t) ∝
√

I(t) (one-photon transition),

Ω0f(t)2 ∝ I(t) (two-photon transition),
(2.2a)

S(t) = S0f(t)2 ∝ I(t), (2.2b)

Γ(t) = Γ0f(t)2 ∝ I(t). (2.2c)

Since the analytical models that we consider comprise symmetric pulse shapes, unless specified

otherwise, we shall assume that the pulse shape f(t) is a symmetric (even) function of time,

f(−t) = f(t). (2.3)

However, general results for asymmetric shapes are also derived. The detuning may have a

static component ∆0 and a chirped (time-dependent) part B(t), which may be linear,

B(t) = Ct, (2.4)

or nonlinear, e.g. B(t) = B tanh(t/T ).

The dynamic Stark shift is included in the detuning, i.e. we have

∆(t) = ∆0 + S(t) + B(t). (2.5)

We shall therefore assume that the detuning contains two parts: a symmetric one (even function

of time) ∆e = ∆0 + S(t) and an antisymmetric one (odd function of time) ∆o = B(t).

The system is supposed to be initially in state ψ1 [c1(ti) = 1, c2(ti) = 0] and we are interested

in the occupation probabilities after the interaction, P1→1 = |c1(tf )|2 and P1→2 = |c2(tf )|2, and

the accumulated population loss (ionization) Pion = 1− P1→1 − P1→2.

2.1.2 Detection signals

In a two-state system, the detection signal may be measured by at least three different scenarios.

• Measurement of the post-pulse population of the excited state ψ2 (the transition proba-

bility P1→2) via fluorescence from this state or probe-pulse ionization, Fig. 2.1(a).

• Measurement of the post-pulse population of the initial state ψ1 (the survival probability

P1→1) by using a probe laser pulse to an auxiliary excited state and the ensuing fluores-

cence or ionization from this state, Fig. 2.1(b).

• Measurement of the ionization signal Pion from the excited state ψ2, caused by the exci-

tation pulse itself, and therefore collected during the excitation, Fig. 2.1(c).
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Figure 2.1: Different approaches to measure the detection signal in a two-state system, as

explained in Sec. 2.1.2: (a) post-pulse population of the excited state ψ2 probed by a subsequent

fluorescence or laser-induced ionization; (b) post-pulse population of the initial state ψ1 probed

by a subsequent laser-induced fluorescence or ionization; (c) ionization signal Pion from the

excited state ψ2, caused by the excitation pulse itself.

In this chapter we show that the three signals P1→1, P1→2 and Pion may contain different

information, for example, they may have different symmetry properties. It is therefore very

important in an experiment, even for such a simple two-state system, to pay attention to how

the signal has been collected.

2.2 Asymmetries in two-state excitation

The time-dependent two-state quantum system possesses various symmetries. We shall now

describe some cases when asymmetries emerge, and then analyze what can be accomplished by

means of chirped pulses.

In the numerical simulations below we use symmetric fs(t) and asymmetric fa(t) pulse

shapes,

fs(t) = e−t2/T 2

, (2.6a)

fa(t) = e−t2/T 2

[1 + tanh (t/T )] /2, (2.6b)

The Rabi frequency and the Stark shift are taken as

Ω(t) = Ω0fs,a(t), (2.6c)

S(t) = sΩ(t) = S0fs,a(t), (2.6d)

with S0 = sΩ0.
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2.2.1 Sign inversion symmetries in a two-state system

Sign inversion of the detuning and the Rabi frequency

In the lossless case (Γ = 0), the sign flip in the detuning ∆(t) → −∆(t) is equivalent to

a complex conjugation of both c1(t) and c2(t), and a change of sign in the amplitude c1(t).

Neither of these operations change the transition probability, which is therefore invariant to

the sign flip of the detuning. The presence of losses (Γ > 0) does not change these arguments

because the above operations do not change the sign of the Γ-term.

The sign flip of the Rabi frequency Ω(t) → −Ω(t) is equivalent to the sign flip c2(t) → −c2(t),

and hence this operation does not alter the probabilities either. Again, this conclusion does

not depend on the presence of losses.

Time inversion

In the lossless case (Γ = 0), the probabilities are invariant upon time inversion. This feature

follows from the following arguments. The propagator U(tf , ti) from the initial time ti to the

final time tf is defined via

c(tf ) = U(tf , ti)c(ti). (2.7)

Time inversion means to propagate from tf to ti, which occurs through the inverse of the

propagator,

c(ti) = U−1(tf , ti)c(tf ) = U†(tf , ti)c(tf ), (2.8)

because for coherent evolution the Hamiltonian is hermitian and the propagator is unitary,

U−1(tf , ti) = U†(tf , ti). In the interaction representation the propagator belongs to the SU(2)

group and can be parameterized by the Cayley-Klein parameters [20] a and b as

U(tf , ti) =


 a −b∗

b a∗


 . (2.9)

Therefore, the transition probability from ti to tf is P if
1→2 = |b|2, and the transition probability

from tf to ti is P fi
1→2 = | − b|2 = P if

1→2; hence the forward and backward transition probabilities

are equal.

This property holds only when: (i) there are only two states [only then the off-diagonal

Cayley-Klein parameters are equal in absolute value, Eq. (2.9)]; (ii) there are no incoherent

processes [only then Eq. (2.8) holds]. When there are incoherent processes, or/and more than

two states, the forward and backward transition probabilities generally differ. For example, in

stimulated Raman adiabatic passage (STIRAP) [21], the forward (with counterintuitive pulse

order) and backward (with intuitive order) processes lead to substantially different results.
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Figure 2.2: The Rabi frequency and the energies in a two-state system (upper plots) and the

populations (bottom plots) for a symmetric Gaussian pulse (2.6a) with a peak Rabi frequency

Ω0 = 15/T , for a linear chirp (2.4), with static detuning ∆0 = 10/T , relative Stark shift s = 0.5,

and no population loss (Γ = 0). Left frames: up-chirp, C = 20/T 2, right frames: down-chirp,

C = −20/T 2.

2.2.2 Chirped-pulse excitation

Chirped laser pulses introduce further symmetries and asymmetries in two-state excitation.

Lossless case (Γ = 0)

Symmetric pulse shape. In the lossless case (Γ = 0), when all terms but the chirp are

even functions of time and the chirp is an odd function of time, Eqs. (2.2), (2.3) and (2.6), the

sign flip of the chirp is equivalent to a time inversion; then if the up-chirp corresponds to the

forward process, the down-chirp corresponds to the backward process. An example is shown

in Fig. 2.2 where the Rabi frequency and the energies (diabatic and adiabatic) are plotted

together with the time evolution of the populations in the absence of losses (Γ = 0). The

pulsed field creates an avoided crossing of the adiabatic (dressed) energies. The sign of the

chirp (up-chirp or down-chirp) determines when the crossing occurs: at early (for up-chirp) or

late (for down-chirp) times. The final transition probability is the same for up and down chirps
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Figure 2.3: Excitation probability vs the chirp rate C in the absence of losses (Γ = 0). The

four curves represent combinations of presence (s = 0.5) or absence (s = 0) of Stark shift, and

symmetric (sym) or asymmetric (asym) pulse shapes. The peak Rabi frequency is Ω0 = 15/T

and the static detuning is ∆0 = 10/T .

because of the symmetries discussed above. However, the population histories are different and

this makes a difference when a population loss mechanism is present, such as ionization induced

by the excitation pulse. Then an early crossing will expose more population to ionization and

therefore will produce a larger ionization signal. The presence or absence of ac Stark shift does

not alter qualitatively the picture in this case.

By combining arguments from the above discussion it is readily seen that the populations

are invariant to the sign change of the symmetric part ∆e(t) of the detuning, e.g., the static

part ∆0 for zero Stark shift. Indeed, the sign change ∆e(t) → −∆e(t) is equivalent to the

combination of the two sign changes ∆o(t) → −∆o(t) and ∆(t) → −∆(t), which, as we showed

above, do not change the post-pulse populations. The implication is that the excitation line

profile P1→2(∆0) is a symmetric function (in the absence of Stark shift), even in the presence

of a frequency chirp.

Asymmetric pulse shape. If the pulse shape is asymmetric in time, the sign flip of the chirp

is not equivalent to time inversion and the transition probabilities for up-chirp and down-chirp

may differ. This is easily understood from another viewpoint, when the chirp is sufficiently

large to create an energy level crossing (at time tc): for an asymmetric pulse, an up-chirp

can create a level crossing at different value of the Rabi frequency than does a down-chirp;

hence the transition probabilities, which depend primarily on the ratio Ω(tc)
2/|C|, will differ

in general [6, 22].



2.2. Asymmetries in two-state excitation 14

0

0.05

0.10

0.15

-40 -20 0 20 40

s = 0.5, d = 10
s = 0, d = 10
s = 0, d = 0
s = 0.5, d = 0

Chirp Rate C (in units 1/T
2
)

Io
n

iz
at

io
n

P
ro

b
ab

il
it

y

Figure 2.4: Ionization probability vs the chirp rate C in the presence of ionization losses

(Γ0 = 0.1/T ). The four curves represent combinations of presence or absence of Stark shift and

static detuning, for symmetric pulse shapes. The peak Rabi frequency is Ω0 = 15/T .

Figure 2.3 illustrates these properties for symmetric and asymmetric pulse shapes, in the

presence and absence of ac Stark shift, and for linear chirp. The figure shows that the chirp

asymmetry occurs only for asymmetric pulse shape (2.6b). The presence of ac Stark shift

(whenever present it is assumed quite strong, S0 = 0.5Ω0) has only a marginal effect. The very

small value of the excitation probability around zero chirp is due to the large static detuning

∆0.

Lossy case (Γ > 0)

The presence of ionization loss breaks the symmetry of the Hamiltonian (2.1). Then even if the

pulse shape f(t) is symmetric the ionization probability Pion exhibits asymmetry with respect to

the sign of the chirp C. This is demonstrated in Fig. 2.4. The only case when Pion is symmetric

vs C is when the static detuning and the ac Stark shift both vanish, ∆0 = 0 and S0 = 0; then

the change of sign of the chirp is equivalent to sign inversion of the detuning, with no effect on

the probabilities. Similar asymmetry as in Pion emerges in the excitation probability P1→2.

It is far less evident that the survival probability P1→1 retains its symmetry versus the

chirp, even though Pion and P1→2 are asymmetric. It is shown in Appendix A.3 that if the

Rabi frequency Ω(t) and the loss rate Γ(t) are even functions of time, while the detuning is a

sum of an even part ∆e (the static component and the Stark shift) and an odd part ∆o (the

chirp component), then changing the sign of the odd (or the even) part leaves the final survival

probability unchanged, although the evolution can be different. The implication is that the

survival probability P1→1 is an even function of the chirp rate C (regardless of the Stark shift).
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Figure 2.5: Probabilities P1→1 and P1→2 and the ionization probability Pion vs the static detun-

ing ∆0 and the chirp rate C in the presence of ionization losses (Γ0 = 0.5/T ) and in the absence

of Stark shift, s = 0. The pulse shape is Gaussian, Eq. (2.6a), with a peak Rabi frequency

Ω0 = 15/T .

The survival probability P1→1 is an even function of the static detuning ∆0 only in the absence

of Stark shift (s = 0), because the symmetric part of the detuning ∆e is a sum of the static

detuning and the Stark shift. With nonzero Stark shift, the symmetry is lost and P1→1 is

asymmetric vs ∆0.

These features are illustrated in Fig. 2.5, which shows a contour plot of the probabilities

P1→1 and P1→2 and the ionization probability Pion vs the static detuning ∆0 and the chirp rate

C. The transition probability P1→2 and the ionization probability Pion are highly asymmetric

vs both ∆0 and C. Because the pulse shape is symmetric, this asymmetry is caused by the

presence of ionization losses. However, the ground-state probability P1→1 (i.e. the survival

probability) is symmetric vs the chirp C, in complete agreement with the property proved in
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Figure 2.6: Time evolution of the probabilities P1→1 and P1→2 and the ionization probability

Pion in the presence of ionization losses (Γ0 = 0.5/T ) and ac Stark shift, s = 0.5. The pulse

shape is a Gaussian, with a peak Rabi frequency Ω0 = 15/T . The four frames correspond to

four combinations of positive and negative ∆0 and C: (i) upper left: ∆0 = −20/T , C = 30/T 2;

(ii) upper right: ∆0 = 20/T , C = 30/T 2; (iii) lower left: ∆0 = −20/T , C = −30/T 2; (iv)

lower right: ∆0 = 20/T , C = −30/T 2. On the top of each frame with the probabilities, the

corresponding energy diagram is displayed. Thin solid curves show the adiabatic (dressed)

energies, the dashed curves show the diabatic energies, and the thick curves the laser pulse

envelope.

Appendix A.3. Because of the absence of Stark shift, P1→1 is also symmetric vs ∆0.

The fact that asymmetry exists follows from the broken symmetries of the Hamiltonian in

the presence of losses, as explained above. The details of this asymmetry, e.g. which chirp

favours ionization, can be understood by looking at the time evolution of the probabilities and

the respective energy diagram. Figure 2.6 presents a typical example of time evolution for four

different combinations of detunings and chirps. As discussed above, an early crossing induces

a larger ionization signal. An early crossing occurs when both the static detuning ∆0 and the

chirp rate C have the same sign, positive (top right frame) or negative (bottom left frame); as

expected, the ionization signal in these cases is larger.
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2.3 Analytic models

Now we shall present two exactly soluble analytic models, which will allow us to illustrate

explicitly the features discussed above.

2.3.1 Generalized Demkov-Kunike model

The generalized Demkov-Kunike (DK) model is defined by

Ω(t) = Ω0 sech (t/T ), ∆(t) = ∆0 + B tanh(t/T ), (2.10)

where Ω0, ∆0 and B are real parameters and the loss rate of the excited state is Γ(t) = Γ0 =

const = 0. Because of the constant population loss this model is suitable to describe excitation

in the presence of fluorescence from the excited state to other states outside the system, or in

the presence of ionization from the excited state induced by another, cw laser, coupling this

state to the continuum. In the original DK model, there is no population loss, Γ0 = 0 [11]. By

following the derivation in [23] we can solve the generalized DK model for Γ0 = 0. The exact

survival probability (the ground-state population) at t →∞ is [23]

P1→1 =

∣∣∣∣
Γ[1

2
(1 + 1

2
γ + i(δ − β))]Γ[1

2
(1 + 1

2
γ + i(δ + β))]

Γ[1
2
(1 + 1

2
γ + κ + iδ)]Γ[1

2
(1 + 1

2
γ − κ + iδ)]

∣∣∣∣
2

(2.11)

with α = Ω0T , β = BT , γ = Γ0T , δ = ∆0T and κ =
√

α2 − β2. In the absence of decay, when

γ = 0, this probability coincides with the original DK probability [11]:

P1→1 =
cosh(πδ) + cos(πκ)

cosh(πδ) + cosh(πβ)
. (2.12)

The transition probability P1→2 vanishes as t → ∞ because of the constant loss, P1→2 → 0.

The ionization is

Pion = 1− P1→1. (2.13)

Equations (2.11) and (2.13) show that the survival probability P1→1 and the ionization Pion are

symmetric versus the signs of ∆0 and B, as expected from the general theory in Sec. 2.2. This

property is illustrated in Fig. 2.7, where the survival and ionization probabilities are plotted

versus the static detuning ∆0 and the chirp rate B.
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Figure 2.7: Survival probability P1→1 and ionization Pion for the Demkov-Kunike model vs. the

static detuning δ (for α = 10, β = 2, γ = 0.2) (top) and the chirp β (for α = 10, δ = 10, γ = 0.2)

(bottom).

2.3.2 Generalized Carroll-Hioe model

The model

Another exactly soluble analytic model is defined by

Ω(t) = Ω0 sech (t/T ), (2.14a)

∆(t) = B tanh(t/T ) + S0 sech (t/T ). (2.14b)

When Ω0, B, and S0 are real the solution has been derived by Carroll and Hioe (CH) [14]. Here

we extend this model to nonzero loss rate,

Γ(t) = Γ0 sech (t/T ); (2.15)

the exact solution is derived in Appendix A.4. This model allows us to describe two-photon

excitation with a tanh chirp, in the presence of ac Stark shift and single-photon ionization.

Because the Rabi frequency, the Stark shift and the population loss rate are all proportional

to the same function sech (t), this model is particularly suitable for two-photon excitation

with simultaneous single-photon ionization; then the CH model imposes a hyperbolic-secant

temporal dependence on the intensity of the laser pulse.



2.3. Analytic models 19

Transition probabilities: exact

The transition probabilities are derived in Appendix A.4 and read

P1→1 = e−πγ

∣∣∣∣
eπβ/2 cos 2πq − e−πβ/2 cos 2πr

sinh πβ

∣∣∣∣
2

, (2.16a)

P1→2 = e−πγ

(
π2αβ

2 sinh πβ

)2

× |Γ(1− iβ/2 + r + q)Γ(1− iβ/2 + r − q)|−2

× |Γ(1− iβ/2− r + q)Γ(1− iβ/2− r − q)|−2 ,

(2.16b)

P2→1 = e−πγ

(
π2αβ

2 sinh πβ

)2

× |Γ(1 + iβ/2 + r + q)Γ(1 + iβ/2 + r − q)|−2

× |Γ(1 + iβ/2− r + q)Γ(1 + iβ/2− r − q)|−2 ,

(2.17a)

P2→2 = e−πγ

∣∣∣∣
e−πβ/2 cos 2πq − eπβ/2 cos 2πr

sinh πβ

∣∣∣∣
2

, (2.17b)

where

r = 1
4

√
α2 + (σ + iβ − iγ)2, (2.18a)

q = 1
4

√
α2 + (σ − iβ − iγ)2, (2.18b)

with α = Ω0T , β = BT , γ = Γ0T , and σ = S0T . It is easy to verify that for γ = 0 we have

P1→1 = P2→2 and P1→2 = P2→1 because r = q∗. For γ 6= 0 these equalities do not hold.

For a system initially in state 1, the ionization signal is

Pion = 1− P1→1 − P1→2. (2.19)

Obviously, the survival probabilities P1→1 and P2→2, Eqs. (2.16a) and (2.17b), are even

functions of B and S0, as it follows also from the general theory. The transition probabilities

P1→2 and P2→1, however, are not invariant upon the sign flip B → −B or S0 → −S0. We

illustrate this property in Fig. 2.8, where the populations and the ionization are plotted vs the

chirp rate B. The survival probability P1→1 is an even function of B, whereas the transition

probability P1→2 and the ionization Pion are asymmetric vs B.

In the absence of Stark shift and losses, S0 = Γ0 = 0, the Carroll-Hioe model reduces to the

Allen-Eberly model, the transition probability for which reads [8, 9]

PAE
1→2 = PAE

2→1 = 1− cos2 (πκ/2)

cosh2 (πβ/2)
, (2.20)
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Figure 2.8: Probabilities P1→1, P1→2 and the ionization Pion for the Carroll-Hioe model as a

function of the chirp rate β (for α = 2, σ = 1, γ = 0.5) (top) and the Stark shift σ (for α = 2,

β = 2, γ = 0.5) (bottom).

where κ =
√

α2 − β2. For a sufficiently large chirp rate B and peak Rabi frequency Ω0, this

transition probability approaches unity,

PAE
1→2 → 1 (Ω0 & B & 1/T ); (2.21)

this is an example of chirped-pulse adiabatic passage [15].

Transition probabilities: asymptotics

The extension of the Carroll-Hioe model to complex parameters presented above allows us

to study quantitatively how adiabatic passage is affected by the presence of Stark shift and

irreversible ionization losses.

We are interested primarily in the regime of small values of σ and γ, |σ − iγ| ¿ 1. We use

the expansions

r ∼ κ
4

+
β(γ + iσ)

4κ
+O(|σ − iγ|2), (2.22a)

q ∼ κ
4
− β(γ + iσ)

4κ
+O(|σ − iγ|2). (2.22b)
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and expand the sine and cosine in Eq. (2.16a) to find the following asymptotics of the survival

probability

P1→1 ∼ PAE
1→1e

−πγ

[
1 + πγ

β

κ
tan(πκ/2)

tanh(πβ/2)
+O(σ2, γ2)

]
. (2.23)

For the transition probability we find from Eq. (2.16b) the asymptotics

P1→2 ∼ PAE
1→2e

−πγ
[
1 +O(σ2, γ2)

]
. (2.24)

Equations (2.23) and (2.24) show that the Stark shift affects the probabilities only in second

order O(σ2). If κ = 0 (i.e. for α = β), it can be shown that Eqs. (2.23) and (2.24) hold up to

first order O(σ, γ).

Using Eqs. (2.23) and (2.24) we obtain the asymptotics of the ionization signal,

Pion ∼ 1− e−πγ − e−πγπγ
β

κ
sin (πκ)

sinh (πβ)
+O(σ2, γ2). (2.25)

This formula reveals a curious feature of the ionization signal: it exhibits damped oscillations

versus the peak Rabi frequency (through κ). This feature is indeed intriguing because the

unstructured ionization continuum is usually seen as an incoherent medium, void of interference

patterns and oscillations. Here we find that the oscillation frequency depends only on κ =√
α2 − β2 ≡ T

√
Ω2

0 −B2, i.e. on the peak Rabi frequency Ω0 and the chirp rate B, but not on

the Stark shift S0 and the decay rate Γ0. The amplitude of the oscillations depends on all these

parameters but S0; most notably, it vanishes rapidly with the decay rate Γ0 and the chirp rate

B, but only slowly with Ω0, as a sinc function.

These features are illustrated in Fig. 2.9, where the ionization signal is plotted versus the

peak Rabi frequency for different sets of parameters. When the loss rate Γ0 is increased the

ionization oscillates around an increased asymptotic value, 1− e−πγ, and the oscillation ampli-

tude varies as γe−πγ (the maximum amplitude is for γ = 1/π), but the phase of the ionization

oscillations is almost unaffected. Finally, as follows from Eq. (2.25), the oscillation amplitude

decreases with the chirp rate B, and it is maximal at zero chirp.

2.4 Conclusions

In this chapter we have presented a detailed study of the effects of Stark shift and irreversible

population loss (ionization) upon chirped adiabatic passage in a two-state quantum system.

We have shown that in the presence of population loss channel, various symmetries that exist

in the lossless case are broken, whereas others remain intact. We have shown that three

conventional detection signals — the post-excitation populations of states 1 and 2 and the
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Figure 2.9: Ionization in the Carroll-Hioe model as a function of the peak Rabi frequency Ω0

for different values of the ionization rate γ = Γ0T . The chirp rate is BT = 0.5 and the Stark

shift is S0 = 0.1Ω0. The solid curves show the exact values, calculated numerically, and the

dashed curves present the asymptotics (2.25).

ionization signal collected during the excitation — exhibit different symmetries. In particular,

the post-excitation population of the initial state (the survival probability) retains its symmetry

with respect to sign flip of the even part (typically the static detuning) or the odd part (typically

the chirp) of the detuning. The post-excitation population of the other state and the ionization

signal, though, do not have this symmetry, and are therefore asymmetric with respect to the

chirp and the static detuning.

These features can be observed in a single-photon transition between two states, in which

the upper state is ionized by the excitation pulse. A three-state ladder system, with a far-off-

resonance intermediate state (which can be eliminated adiabatically), provides another con-

venient playground for testing these symmetries; For example, the ladder 3s-3p-4s in sodium

atom appears particularly suitable [16].

We have made use of two exactly soluble analytic models, which are extensions of the

models of Demkov-Kunike and Carroll-Hioe to complex parameters. Both models assume a

hyperbolic-secant time dependence of the Rabi frequency. The Demkov-Kunike detuning is a

sum of a constant term, the real part of which describes a static detuning and the imaginary

part a constant probability loss, and a hyperbolic-tangent chirp. The Carroll-Hioe detuning

is a sum of a hyperbolic-secant term, the real part of which describes a Stark shift and the

imaginary part an ionization (both caused by the excitation pulse), and a hyperbolic-tangent

chirp. This model therefore can be used to describe a two-photon excitation accompanied by

simultaneous single-photon ionization.
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The analytic solutions make it possible, besides illustrating explicitly the symmetries in the

signals, to derive the corrections to the adiabatic passage solution introduced by the Stark shift

and the population loss. We have found an interesting oscillatory behavior in the ionization

signal. The phase of these oscillations depends primarily on the Rabi frequency, and to a lesser

extend on the chirp, but not on the loss rate or the Stark shift. We have used the generalized

Carroll-Hioe solution to establish the optimal conditions for experimental observation.



Chapter 3

Phase shifts in nonresonant coherent

excitation

Far-off-resonant laser pulses are a popular tool for inducing controllable phase shifts in atomic

states. These phase shifts — usually referred to as dynamic Stark shifts — are frequently used

in the construction of dynamic phase gates, which are a basic tool in quantum information

processing [3, 4]. In many algorithms (e.g. Grover’s quantum search [24]) one has to prepare

such phase shifts very accurately [25]. Insofar as quantum algorithms involve a great number

of phase gates, the accuracy of the latter is of crucial importance for high-fidelity quantum

information processing.

There are three major types of phase gates: dynamic [25], geometric [26] and using relative

laser phases [27]. While the latter two types have certain advantages in terms of robustness

against parameter fluctuations, these come at the cost of more demanding implementations.

The dynamic phase gate benefits from the simplicity of implementation (because, unlike the

other phase gates, it requires just a single off-resonant pulsed field), which determines its wide-

spread use.

We emphasize that such phase shifts also emerge in various more traditional dynamical

problems involving complicated linkage patterns. The quantum dynamics of these multistate

systems can often be understood only by reduction to simpler two- or three-state systems by

using adiabatic elimination of all far-off-resonant (virtual) states. For instance, it is mandatory

to account for such dynamic Stark shifts in excitation of multiphoton transitions by femtosecond

laser pulses [17,28].

As far as a phase shift of π is concerned the simplest approach is to use a resonant 2π pulse.

A variable phase shift φ, however, requires a field with a suitable detuning and intensity; such

a variable phase shift is required, for example, in deterministic quantum search [29].

24
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The dynamic Stark shift, and the ensuing phase shift, are usually calculated by eliminating

adiabatically the off-resonant state(s). In this chapter we show that, unless applied very care-

fully, the adiabatic elimination (AE) approximation can lead to significant errors in the value

of the phase. We analyze various sources of errors, ranging from higher terms in the AE ex-

pansion to population decay and shifts from additional states [30], and show that the standard

AE approximation is accurate only for very large detuning ∆ (Sec. 3.2). We then present a

method for the evaluation of the phase based on the adiabatic approximation (Sec. 3.3). This

approximation provides a simple formula for the gate phase, which contains the AE phase as a

limiting case for |∆| → ∞, but it is also valid for moderately large detunings (|∆|T & 1, with

T being the pulse width). Then we include superadiabatic corrections (Sec. 3.3.3), dissipation

(Sec. 3.3.4), effects of additional states (Sec. 3.4), and several exact solutions (Sec. 3.5).

3.1 Background

We consider a two-state quantum system (a qubit) interacting with a coherent field (Fig. 3.1,

left) and we wish to estimate the accumulated phase during this interaction. The phase gate

is defined as

F =


 eiφ 0

0 e−iφ


 , (3.1)

where F = U(tf) is the desired form of the propagator U(t) at the final time tf. The propagator

U(t) satisfies the Schrödinger equation [1],

i~∂tU(t) = H(t)U(t), (3.2)

with the initial condition U(ti) = I at time ti. This propagator allows us to calculate the

phases of the two states, accumulated during the interaction, for arbitrary initial conditions.

The Hamiltonian in the interaction representation and the rotating-wave approximation reads

H(t) =
~
2


 0 Ω(t)e−iD(t)

Ω(t)eiD(t) 0


 , (3.3)

For simplicity, we assume hereafter that the detuning is constant, ∆ = const; the results can

be readily extended to time-dependent ∆(t).

In terms of the two probability amplitudes of the qubit states c1(t) and c2(t), the Schrödinger

equation reads

i~∂tc(t) = H(t)c(t), (3.4)



3.2. Adiabatic-elimination approximation 26

 

2∆

3∆

12Ω

23Ω

1

3

2∆

Ω

1

2

1

2
3

12Ω 13Ω
2∆ 3∆

Figure 3.1: Linkage diagram for a two-state system (left), a three-state system in a ladder

configuration (middle), and a three-state system in a V configuration (right).

with c(t) = [c1(t), c2(t)]
T . For initial conditions c1(ti) = 1 and c2(ti) = 0, the action of the

phase gate F reads

Fc1(ti) = eiφc1(ti), Fc2(ti) = 0. (3.5)

For initial conditions c1(ti) = 0 and c2(ti) = 1, we have

Fc1(ti) = 0, Fc2(ti) = e−iφc2(ti). (3.6)

Solving the Schrödinger equation (3.4) for the initial conditions c1(ti) = 1, c2(ti) = 0 is sufficient

for the calculation of the gate phase: if the Hamiltonian (3.3) produces the phase change (3.5),

it will produce the phase gate (3.1).

3.2 Adiabatic-elimination approximation

3.2.1 Steady-state solution

We begin with the traditional adiabatic elimination. To this end, it is suitable, with the phase

transformation c1(t) = b1(t), c2(t) = b2(t)e
−iD(t), to write the Schrödinger equation (3.4) in the

energy picture,

i∂tb1(t) = 1
2
Ω(t)b2(t), (3.7a)

i∂tb2(t) = 1
2
Ω(t)b1(t) + ∆b2(t), (3.7b)

with the initial conditions b1(ti) = 1 and b2(ti) = 0. The AE approximation is applicable when

the field is tuned far off resonance (|∆| À Ω), which implies a small transition probability.

Then we set ḃ2(t) = 0, find b2(t) from Eq. (3.7b), and substitute it in Eq. (3.7a). The result is

a solution of the form (3.5), with a zero transition probability and a phase factor

φ =

∫ tf

ti

Ω(t)2

4∆
dt. (3.8)
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In fact, this is the steady-state solution, that is just the first term in an asymptotic expansion

over ∆. Unfortunately, this expression has only a small region of validity |∆| À Ω and does

not give us a rigorous error estimation.

3.2.2 Adiabatic elimination: higher terms

In order to find the next terms in the asymptotic expansion over ∆ it is more convenient to

start from the original interaction representation, Eqs. (3.3) and (3.4),

i∂tc1(t) = 1
2
Ω(t)e−iD(t)c2(t), (3.9a)

i∂tc2(t) = 1
2
Ω(t)eiD(t)c1(t). (3.9b)

A formal integration gives

c2(t) = − i

2

∫ t

−∞
Ω(t′)ei∆t′c1(t

′) dt′. (3.10)

Now we integrate by parts,

c2(t) = −
∫ t

−∞

Ω(t′)
2∆

c1(t
′) dei∆t′

= −Ω(t)

2∆
c1(t)e

i∆t +

∫ t

−∞

ei∆t′

2∆
∂t′ [Ω(t′)c1(t

′)] dt′

= −Ω(t)

2∆
c1(t)e

i∆t +
1

2i∆2
∂t [Ω(t)c1(t)] e

i∆t

− 1

2i∆2

∫ t

−∞
ei∆t′∂t′t′ [Ω(t′)c1(t

′)] dt′. (3.11)

We substitute this expression in Eq. (3.9a) and obtain

c1(t) = e−γ(t)eiφ(t), (3.12)

where γ ≈ 0 for a large detuning. Indeed, for smooth pulse shapes, the transition probability

(1−e−2γ here) vanishes exponentially with ∆. For example, for a Gaussian pulse, the transition

probability vanishes as ∼ sech2[π∆T/2 ln(Ω0T )] [31], whereas for a hyperbolic-secant pulse it

vanishes as ∼ sech2(π∆T/2) [7].

The phase in Eq. (3.12) reads

φae =

∫ tf

ti

[
Ω(t)2

4∆
− Ω(t)4 + 4Ω(t)Ω̈(t)

16∆3
+O

(
Ω6

∆5

)]
dt. (3.13)

The calculation of the higher terms is increasingly complicated and barely useful. We will refer

to this phase as AE2, in order to distinguish it from the AE phase (3.8). This expression shows

that the AE approximation is good only for a very large detuning and a smooth pulse (because
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of the presence of Ω̈(t)). The reason is that in an expansion for a phase it is not sufficient to

retain the leading term and demand the next term to be much smaller than it; one must also

demand all neglected terms to be much smaller than unity. Obviously, terms of the order of

unity or larger cannot be discarded in the estimate of the phase because the latter is defined

modulo 2π; hence the leading term alone may provide a value that is not even close to the exact

value. We emphasize, however, that if the transition probability is concerned, then the leading

term in the AE approximation, which is of order O(Ω2
0/∆

2), provides an adequate estimate.

We are now in a position to estimate the necessary values of the interaction parameters.

Let us express the time-dependent Rabi frequency of the pulse as Ω(t) = Ω0f(t/T ), where Ω0 is

its peak value, T is the characteristic pulse width, and f(t/T ) describes the pulse shape. The

AE approximation demands |∆| À Ω0. The value of the phase is in general of order O(1); this

implies Ω2
0T ∼ |∆|. Hence we must have (Ω0T )2 ∼ |∆|T À Ω0T , which in turn implies

|∆| À Ω0 À 1/T, (3.14)

i.e. the detuning ∆ and the peak Rabi frequency Ω0 must be large compared to the Fourier

bandwidth of the pulse 1/T .

3.2.3 Examples

Gaussian pulse. For a Gaussian pulse,

Ω(t) = Ω0e
−t2/T 2

, (3.15)

where T and Ω0 are positive constants, the Schrödinger equation cannot be solved exactly and

only some approximations are known [31]. The AE approximation (3.13) gives

φG
ae ∼

Ω2
0T
√

π

4
√

2∆
− Ω2

0

√
π(Ω2

0T
2 − 4

√
2)

32∆3T
+O(Ω6

0/∆
5). (3.16)

Due to condition (3.14), the “roughness” term −4
√

2 in the second term, which derives from

the Ω̈(t)-term in Eq. (3.13), is small compared to the term Ω2
0T

2.

A meaningful phase gate requires that φ ∼ π, which implies that we must have Ω2
0T ∼

4
√

2π |∆|. Then the second term in Eq. (3.16) is ∼ π3/2/(∆T ), which provides an estimate of

the error in the phase. For an error . 10−4, we must have |∆|T & 5 × 104. This is indeed

a very large value, particularly in many-particle systems where a variety of modes exists, and

such a detuning may violate the condition of single-mode coupling.

Figure 3.2 shows the phase shift after an interaction with an off-resonant Gaussian pulse.

The AE phase (3.16) approaches the exact phase only when the detuning ∆ exceeds the peak
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Figure 3.2: Phase shift vs the detuning ∆ for a Gaussian pulse shape with a peak Rabi frequency

Ω0 = 8/T . The exact phase, calculated numerically by solving the Schrödinger equation, is

compared with the AE and AE2 approximations, the adiabatic (AA) and superadiabatic (SA)

phases. Top: the phase shift; bottom: the absolute error of the respective approximation.

Rabi frequency Ω0 The error of the first (steady-state) term in the AE phase barely drops

to 1% in the shown range. The second term in the AE expansion (3.16) is seen to improve

the accuracy as |∆| increases. The other, more accurate phases shown in the same figure are

derived in the following section.

Figure 3.3 shows the same phases versus the peak Rabi frequency Ω0. Similar conclusions

can be drawn, as for Fig. 3.2: the AE approximation gives reasonable results only when the

detuning ∆ greatly exceeds the peak Rabi frequency Ω0. The other two phases, to be discussed

below, clearly provide much better fits to the exact phase for the entire ranges in Figs. 3.2-3.3.

Hyperbolic secant pulse. The sech pulse,

Ω(t) = Ω0 sech(t/T ), (3.17)

describes the pulse shape in the famous exactly-soluble Rosen-Zener model [7]; we shall return

to it in Sec. 3.5. The AE approximation (3.13) gives for it

φsech
ae ∼ Ω2

0T

2∆
− Ω2

0(Ω
2
0T

2 − 2)

12∆3T
+O(Ω6

0/∆
5). (3.18)

This approximation is compared in Fig. 3.4 with the exact values. Similar conclusions as for
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Figure 3.3: Phase shift vs the peak Rabi frequency Ω0 for a Gaussian pulse shape and a detuning

∆ = 10/T . The exact phase, calculated numerically by solving the Schrödinger equation, is

compared with the AE and AE2 approximations, the adiabatic (AA) and superadiabatic (SA)

phases. Top: the phase shift; bottom: the absolute error of the respective approximation.

the Gaussian pulse in Figs. 3.2 and 3.3 apply: the AE approximation provides a reasonable

estimate for the phase shift only when the detuning ∆ greatly exceeds the peak Rabi frequency

Ω0. Keeping more terms in the expansion (3.18) improves the accuracy to some extent for large

detunings, but this neither extends the range of validity of this approximation nor reaches the

accuracy of the adiabatic and superadiabatic approximations, to which we turn our attention

now.

3.3 Adiabatic approximation

We shall now demonstrate that the adiabatic approximation is a very accurate tool for calcu-

lation of the phase shift, with a vast domain of validity.
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Figure 3.4: The same as Fig. 3.2 but for a hyperbolic-secant pulse shape.

3.3.1 Two-state adiabatic solution

The adiabatic states ϕ+(t) and ϕ−(t) are the eigenstates of the time-dependent Hamiltonian in

the Schrödinger representation (3.7), with eigenvalues

λ±(t) = 1
2
[∆± λ(t)]. (3.19)

with λ(t) =
√

Ω(t)2 + ∆2. The amplitudes in the adiabatic basis a(t) = [a+(t), a−(t)]T are

connected with the diabatic ones b(t) via the rotation matrix

R(θ) =


 cos θ sin θ

− sin θ cos θ


 , (3.20)

as b(t) = R(θ(t))a(t), where θ = 1
2
arctan(Ω/∆). The Schrödinger equation in the adiabatic

basis reads

i~∂ta(t) = Ha(t)a(t), (3.21)

where

Ha(t) = ~


 λ−(t) −iθ̇(t)

iθ̇(t) λ+(t)


 . (3.22)
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If |θ̇(t)| ¿ λ+(t) − λ−(t) = λ(t), then the evolution is adiabatic and the propagator in the

adiabatic basis reads

Ua =


 e−iΛ− 0

0 e−iΛ+


 , (3.23)

where Λ± =
∫ tf

ti
λ±(t) dt. We find readily that the propagator U in the original basis (3.2) is

the phase gate (3.1), U = F, with the phase φ = −Λ−, or explicitly,

φa = 1
2

∫ tf

ti

[
√

Ω(t)2 + ∆2 −∆] dt. (3.24)

This phase reduces to the AE approximation (3.8) for large detuning, |∆| À Ω0. However,

Eq. (3.24) is valid also for |∆| < Ω0, provided the adiabatic approximation holds.

Figures 3.2-3.4 show that the adiabatic phase (3.24) provides a considerable improvement of

accuracy over the AE phase for all detunings |∆| & 1/T . Unless a very high accuracy is required

(error < 10−4) the adiabatic phase must suffice in applications. The key to the understanding

of the reason for its accuracy is hidden in the adiabatic condition.

3.3.2 Adiabatic condition

For adiabatic evolution, the nonadiabatic coupling |θ̇(t)|must be small compared to the splitting

λ(t), in order to suppress transitions between the adiabatic states. For a constant detuning,

the adiabatic condition reads

|Ω̇(t)∆| ¿ 2[Ω(t)2 + ∆2]3/2. (3.25)

For Gaussian [31] and sech [7] pulse shapes this condition reduces to

Gaussian: |∆| À ∆0 =
2

3
√

3 T

√
ln(Ω0T ), (3.26a)

sech : |∆| À ∆0 =
1

3
√

6 T
. (3.26b)

Adiabatic evolution is achieved for a sufficiently large detuning. The sech pulse is obviously

more adiabatic for it requires a lower detuning. The Gaussian pulse is less adiabatic; moreover,

unlike the sech pulse it exhibits a logarithmic power broadening.

The important message for the present context is that the adiabatic approximation re-

quires a much lower value of the detuning than the AE approximation. Conditions (3.26) are

only indicative: a more thourough analysis shows that the nonadiabatic deviation vanishes

exponentially with the detuning [7,31,32]. Consequently, the necessary detuning increases log-

arithmically with the required accuracy. The implication is that the adiabatic phase gate can

operate also at intermediate detunings, moreover, regardless of the value of Ω0, because the
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adiabatic condition does not depend (or depends very weakly) on Ω0. Thus the condition for

the adiabatic phase gate is

|∆|T À 1; (3.27)

then the effect of coherent population return [33–35] — the adiabatic return of the population

to the initial state in the absence of a level crossing — ensures a negligibly small transition

probability in the end of the interaction.

We point out, however, that the perturbative estimate for the transient excitation is still

Pe ∼ Ω(t)2

2[Ω(t)2 + ∆2]
; (3.28)

hence there may be a significant transient excitation unless |∆| À Ω0. The adiabatic phase

gate, therefore, can be used for Ω0 > |∆| only if the relaxation times of the two qubit states

are large compared to the pulse duration — a condition that must be fulfilled for any practical

qubit for all types of operations.

3.3.3 Superadiabatic phase

If the evolution is not perfectly adiabatic, we can diagonalize the adiabatic Hamiltonian (3.22)

by the transformation a(t) = R(χ(t))s(t), where χ(t) = 1
2
arctan[θ̇(t)/λ(t)] and the vector s(t)

contains the amplitudes in the superadiabatic basis; they satisfy the equation

i~∂ts(t) = Hs(t)s(t), (3.29)

where

Hs(t) = ~


 µ−(t) −iχ̇(t)

iχ̇(t) µ+(t)


 (3.30)

and µ± = (∆ ±
√

Ω2 + ∆2 + 4θ̇2)/2. The condition for superadiabatic evolution is |χ̇(t)| ¿
µ+(t)− µ−(t); if it holds then the propagator in the superadiabatic basis is

Us =


 e−iM− 0

0 e−iM+


 , (3.31)

where M± =
∫ tf

ti
µ±(t) dt. The propagator in the original basis (3.2) is the phase gate (3.1),

U = F, with the superadiabatic phase φ = −M−, or explicitly,

φs = 1
2

∫ tf

ti




√
Ω(t)2 + ∆2 +

Ω̇(t)2∆2

[Ω(t)2 + ∆2]2
−∆


 dt. (3.32)

The derivative term is the superadiabatic correction to the adiabatic phase (3.24). The condi-

tion this correction to be small is the same as the adiabatic condition (3.25).
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As evident from Figs. 3.2-3.4, the superadiabatic phase (3.32) is extremely accurate for all

detunings except ∆ → 0, with an error comfortably below 10−4 (the usual fault tolerance in

quantum computing). The results clearly demonstrate that the superadiabatic phase outper-

forms the adiabatic phase, let alone the AE phase.

Following the same diagonalization procedure, one can go to the next superadiabatic bases

and achieve an even higher accuracy. However, as Figs. 3.2-3.4 suggest, this is unnecessary

since the superadiabatic phase already easily satisfies the commonly accepted accuracy goal.

3.3.4 Dissipation effects

Dissipation is detrimental for quantum information processing and various proposals have been

put forward to reduce its effects [3, 4]. Because it is impossible to treat here all aspects of

dissipation we restrict ourselves only to the simplest case of irreversible population loss. In

femtosecond physics, where the present results can be particularly useful, this is a very reason-

able assumption because population loss can occur through ionization induced by the driving

laser pulse, whereas the other types of dissipation (dephasing, spontaneous emission, etc.) are

irrelevant due to the ultrashort time scale.

In order to account for the population loss, we write the Hamiltonian in the form

H(t) =
~
2


 0 Ω(t)

Ω(t) 2∆(t)− iΓ(t)


 . (3.33)

Next, we go to the adiabatic basis, formed of the eigenstates of the Hamiltonian without losses

(Γ = 0). In this basis the Hamiltonian reads

H = ~


 λ− − 1

2
iΓ sin2 θ 1

4
iΓ sin 2θ − iθ̇

1
4
iΓ sin 2θ + iθ̇ λ+ − 1

2
iΓ cos2 θ


 , (3.34)

where for brevity the argument t is omitted. In the adiabatic limit, we can neglect θ̇, as

was done in Sec. 3.3.1. Next, we recognize that the first (second) adiabatic state coincides at

t → ±∞ with the first (second) diabatic state. We eliminate adiabatically the second adiabatic

state and obtain the phase and the population of state 1,

φ = −
∫ tf

ti

[
λ−(t) +

Γ(t)2 sin2 2θ(t)

16λ(t)

]
dt, (3.35a)

P1 =

∣∣∣∣exp

[
−1

2

∫ tf

ti

Γ(t) sin2 θ(t) dt

]∣∣∣∣
2

. (3.35b)

We note that the population is much more sensitive (exponentially) to losses than the phase,

which in the lowest order is quadratic in Γ. This conclusion is demonstrated in Fig. 3.5. The
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Figure 3.5: The initial-state population and phase vs the loss rate Γ for a Gaussian pulse with

Ω0 = 8/T and ∆ = 20/T . The solid lines represent the exact values and the dashed lines are

for the approximations (3.35).

phase barely changes its value as the loss rate changes from zero to 10/T , even as the population

of the initial state decreases considerably. We note that the displayed range of loss rates is much

larger than what can be tolerated in quantum computing; nevertheless the phase itself and the

approximation to it are very stable against such losses.

3.4 Effects of additional states

3.4.1 Ladder configuration

Adiabatic elimination. We shall now find how the presence of an additional state affects the

phase shift. For this purpose let us consider a three-state system in the ladder configuration,

wherein nonzero dipole moments only link state 1 with state 2 and state 2 with state 3 (Fig.

3.1, middle), as described by the Hamiltonian

H(t) =
~
2




0 Ω12(t) 0

Ω12(t) 2∆2 Ω23(t)

0 Ω23(t) 2∆3


 . (3.36)
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For the first-order (steady-state) AE approximation, we set ċ2(t) = 0 and ċ3(t) = 0, and find

from the Schrödinger equation the accumulated phase in state 1 to be

φ =

∫ tf

ti

∆3Ω12(t)
2

4∆2∆3 − Ω23(t)2
dt. (3.37)

As expected, in the limits Ω23 → 0 or |∆3| → ∞, this expression reduces to Eq. (3.8). When

4|∆2∆3| À Ω23(t)
2 we obtain

φ =

∫ tf

ti

Ω12(t)
2

4∆2

dt +

∫ tf

ti

Ω12(t)
2Ω23(t)

2

16∆2
2∆3

dt + . . . (3.38)

We conclude that for Ω12 ∼ Ω23 and ∆2 ∼ ∆3, the correction from the presence of an additional

state is of the same order as the second term in the AE expansion (3.13).

Adiabatic approximation. For simplicity and without loss of generality, we will assume

∆3 > ∆2 > 0. In order to find the eigenvalues of the Hamiltonian (3.36), we have to solve the

cubic characteristic equation

ε3 + aε2 + bε + c = 0, (3.39)

where a = −∆2−∆3, b = ∆2∆3−(Ω2
12+Ω2

23)/4, c = ∆3Ω
2
12/4. The three roots of this equation

are the quasienergies of the three-state system [1],

ε1 = −a

3
− 2p

3
cos

β − π

3
, (3.40a)

ε2 = −a

3
− 2p

3
cos

β + π

3
, (3.40b)

ε3 = −a

3
+

2p

3
cos

β

3
, (3.40c)

where

p =
√

a2 − 3b, cos β =
9ab− 2a3 − 27c

2p3
. (3.41)

The adiabatic phase is just an integral over ε1(t)
1,

φ = −
∫ tf

ti

ε1(t) dt. (3.42)

In order to exhibit the effect of the third state on the phase gate, we derive the asymptotics of

the quasienergy ε1 for large ∆3 and substitute it in Eq. (3.42); we find

φ = −
∫ tf

ti

ε−(t) dt−
∫ tf

ti

ε−(t)Ω23(t)
2

4∆3(t)
√

∆2(t)2 + Ω12(t)2
dt, (3.43)

where ε− = (∆2 −
√

∆2
2 + Ω2

12)/2.

1This is valid for the choice ∆3 > ∆2 > 0. For other choices the phase will be an integral over some of the

other energies ε2 or ε3.



3.4. Effects of additional states 37

-1.0

-0.5

0

0.5

1.0

AA3
AA2
AE3
exact

si
nφ

10-6

10-4

10-2

100

0 5 10 15 20
Peak Rabi Frequency Ω

0
 (in units 1/T)

E
rr

or

Figure 3.6: Phase shift of the lowest state in a three-state ladder with detunings ∆3 = 2∆2 =

20/T vs the peak Rabi frequency Ω0. The Rabi frequencies for the two transitions are equal

and have Gaussian shapes. The phases from the adiabatic approximation for two (AA2) and

three (AA3) states, Eqs. (3.24) and (3.42), and the AE approximation for three states (3.38)

are compared to the exact values. The AA3 curve is nearly indiscernible from the exact one.

Figure 3.6 compares the AE and adiabatic approximations to the exact phase shift in a

ladder system. The three-state adiabatic phase (3.42) is very accurate throughout, as already

anticipated, whereas the AE phase (3.38) departs from the exact one when the Rabi frequency

becomes comparable and exceeds the detunings. We note that the error of the AE phase is of

the same order as the error from the neglect of the additional state, Eq. (3.24).

3.4.2 V configuration

If the three-state system is in a V configuration (Fig. 3.1, right), the Hamiltonian reads

H(t) =
~
2




0 Ω12(t) Ω13(t)

Ω12(t) 2∆2 0

Ω13(t) 0 2∆3


 . (3.44)
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Then the AE approximation, applied in a similar fashion as for the ladder system above, gives

in the first order the expression

φ =

∫ tf

ti

Ω12(t)
2

4∆2(t)
dt +

∫ tf

ti

Ω13(t)
2

4∆3(t)
dt. (3.45)

The contributions from each arm in the V system are independent. Higher-order terms mix

the contributions from the two arms.

The adiabatic phase is calculated in a similar manner as for the ladder system, in the form

of an integral over the respective eigenenergy.
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Figure 3.7: Phase shift of the lowest state in a three-state V-system with detunings ∆3 =

2∆2 = 20/T vs the peak Rabi frequency Ω0. The Rabi frequencies for the two transitions are

equal and have Gaussian shapes. The phases from the adiabatic approximation for two (AA2)

and three (AA3) states, and the AE approximation for three states (3.45) are compared to the

exact values. The AA3 curve is indiscernible from the exact one.

In Fig. 3.7 we compare various expressions for the dynamic phase in a three-state V system.

The figure reveals that, once again, the three-state adiabatic approximation (AA3) provides a

very accurate estimate. On the contrary, the error of the AE approximation is comparable to

the effect of the additional third state.

To conclude this section, we point out that a third state in the considered ladder or V systems

distorts the symmetry of the phase gate (3.1) because the third state is coupled differently to
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the two qubit states: directly to one of them and indirectly (via a two-photon transition) to

the other state. For each qubit state, the additional state will make the linkage look either as

a ladder (if connected to the other qubit state) or V (if connected to the same qubit state).

Consequently, the phase shifts for the two qubit states are different, as evident when one

compares the expressions for the ladder and V systems above. We note that a Lambda-system,

with the population initially in one of the lower states is equivalent in the present context to a

ladder system (population initially in the end of the chain). The phase shifts in such a system

have been studied recently [30], in a slightly different context.

In the next section we compare these approximations with the values of several exactly-

soluble two-state and three-state models.

3.5 Exact solutions

We shall present the solutions of three exactly soluble models. The first one is the famous Rosen-

Zener (RZ) model, which assumes a sech pulse shape (3.17) and a constant detuning, and the

others extend the RZ model to systems with three states. The latter are solved by using the

Majorana decomposition [36,37] for a ladder system and the Morris-Shore transformation [38]

for a V system.

3.5.1 Two states: Rosen-Zener model

The exact solution for the phase in the RZ model (3.17) is [7, 39]

φ = arg

[
Γ

(
1
2

+ 1
2
iδ

)2

Γ
(

1
2

+ 1
2
iδ − 1

2
α
)
Γ

(
1
2

+ 1
2
iδ + 1

2
α
)
]

, (3.46)

where α = Ω0T , δ = ∆T , and Γ(z) stands for the gamma function [40]. Using the Stirling

asymptotics of Γ(z) [40], we obtain

φ ∼ Ω2
0T

2∆
− Ω2

0(Ω
2
0T

2 − 2)

12∆3T
+ . . . (|∆| À 1/T, Ω0). (3.47)

This is exactly the result from the AE expansion (3.13).

The exact expression for the phase (3.46) allows us to perform a theoretically exact phase

gate operation with a variable phase φ by selecting a suitable detuning ∆. By using standard

properties of the gamma functions, one can show that the transition probability vanishes exactly

for a pulse area A = πΩ0T = 2nπ, where n is an integer. For these values (α = 2n), Eq. (3.46)

reduces to [39]

φ = nπ + 2 arg

[
n∏

k=1

(2k − 1− i∆T )

]
. (3.48)
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For any desired phase φ the corresponding detuning is found by solving the latter equation for

∆. For example, a phase shift φ = π can be obtained by any odd value of n = 1, 3, 5, . . . and

∆ = 0 (a property that is well known for any pulse shape). The same phase shift can also be

produced by a pulse area A = 4π (n = 2) and ∆T =
√

3. As further examples, phase shifts of

φ = π/2, π/3, π/4, and π/6 can be obtained for n = 1 by choosing, respectively, ∆T = 1,
√

3,

1 +
√

2, and 2 +
√

3.

3.5.2 Three-state ladder

We consider a three-state system in a ladder configuration (Fig. 3.1, middle), described by the

Hamiltonian (3.36), assuming that

Ω12(t) = Ω23(t) = Ω0 sech(t), ∆3 = 2∆2 = 2∆. (3.49)

This model has a simple exact solution [41]: the amplitude of state 1 is just the square of the

amplitude for a two-state problem with a Rabi frequency Ω(t) = Ω12(t)/
√

2. Because this is

the two-state RZ model, we find the phase of state 1 to be

φ = 2 arg


 Γ

(
1
2

+ 1
2
iδ

)2

Γ
(

1
2

+ 1
2
iδ − 1

2
√

2
α
)

Γ
(

1
2

+ 1
2
iδ + 1

2
√

2
α
)


 , (3.50)

with α = Ω0T and δ = ∆T . The exact expression (3.50) allows one to design an exact phase

gate even in the presence of an additional state. For example, a gate phase φ = π can be

obtained for Ω0T = 2n
√

2 with any odd value of n = 1, 3, 5, . . . and ∆ = 0; the same phase can

be produced by a pulse area A = 4π
√

2 (n = 2) and ∆T =
√

3. A phase shift of φ = π/2 can

be obtained for A = 2π
√

2 and ∆T = 1.

The asymptotics of this phase reads

φ ∼ Ω2
0T

2∆
− Ω2

0(Ω
2
0T

2 − 4)

24∆3T
+ . . . (|∆| À 1/T, Ω0). (3.51)

The comparison with Eq. (3.47) shows that the effect of the third state emerges only in the

second term in the expansion over ∆, a feature that appeared earlier in the AE expansion (3.38)

and in the adiabatic expansion (3.43).

3.5.3 Three-state V-system

If the system is in a V configuration (Fig. 3.1, right), and if

Ω12 = κ12Ω0 sech(t/T ), (3.52a)

Ω13 = κ13Ω0 sech(t/T ), (3.52b)

∆2 = ∆3 = ∆, (3.52c)
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with κ12 and κ13 arbitrary constants, then we can use a simple change of basis, known as

the Morris-Shore transformation [38]. The latter transforms the V-system into an uncoupled

dark state and a two-state system, with a detuning ∆ and a Rabi frequency κΩ(t), where

κ =
√
κ2

12 + κ2
13. In this manner it can readily be shown that the argument of the amplitude

of state 1 is [42]

φ = 2 arg

[
Γ

(
1
2

+ 1
2
iδ

)2

Γ
(

1
2

+ 1
2
iδ − 1

2
κα

)
Γ

(
1
2

+ 1
2
iδ + 1

2
κα

)
]

. (3.53)

The asymptotics reads

φ ∼ κ2Ω2
0

2∆
− κ

2Ω2
0(κ2Ω2

0 − 2)

12∆3
+ . . . (|∆| À 1/T, Ω0). (3.54)

The leading term is a sum of two independent phase shifts induced by each of the two arms of

the V-system, in agreement with Eq. (3.45), while the κ4-part in the second term represents a

combined contribution of the two arms.

3.6 Conclusions

We have presented a detailed analysis of the accuracy of the adiabatic elimination approach,

which allows one to eliminate weakly coupled far-off-resonant states and reduce the interaction

dynamics of a quantum system to a smaller effective one. We have put a special emphasis on

the acquired phase shifts in the probability amplitudes after the interaction with an off-resonant

pulsed field. The results have direct implications in the construction of variable dynamic phase

gates, which are of major importance in quantum information processing.

We have shown that in the traditional implementation with a far off-resonance pulsed field,

the formula for the gate phase derived by the adiabatic-elimination approximation, has to be

used with great care because it is just the first term of a series expansion in the inverse detuning

1/∆; higher terms, unless negligible in value with respect to unity, may render the formula

irrelevant. This formula requires a very large detuning in order to be sufficiently accurate,

because including corrections from higher terms is barely useful due to their complexity and

slow convergence. However, quantum information processing involves operations with entangled

many-qubit systems, possessing a variety of frequency modes; there a very large detuning may

violate the assumption of single-mode interactions.

We have proposed to use a much more accurate formula for the phase shift, derived within

the adiabatic-following approximation. The advantage of this adiabatic phase is that the condi-

tion for adiabatic evolution is much more relaxed than the condition for adiabatic elimination.

The adiabatic phase contains the AE approximation as a limiting case for |∆| → ∞; however,
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it also applies to moderate detunings. The adiabatic phase applies also to the case when the

peak Rabi frequency Ω0 exceeds the detuning ∆; in this case the phase gate operates due to the

effect of adiabatic population return. A superadiabatic correction is demonstrated to further

improve the accuracy, to errors comfortably below the fault-tolerance limit of 10−4 in quan-

tum computing. We have also derived the corrections to the gate phase from additional states

coupled to the two qubit states.

In addition, we have derived several exact expressions for the gate phase in several exactly

soluble analytical two-state and three-state models, assuming a hyperbolic-secant pulse shape.

The exact analytical formulae allow us to design highly accurate phase gates, however, at the

expense ot the requirement for a special pulse shape. We have also used the exact expressions

to test the accuracy of the derived AE and adiabatic approximations.

The results in this chapter have potential applications not only in the calculation of dy-

namical Stark phase shifts in simple phase gates but also in complicated multistate linkage

patterns, which can be factorized to simpler systems by utilizing the intrinsic symmetries, e.g.

by the Morris-Shore transformation [38,43].



Chapter 4

Coherent control of a quantum

transition by a phase jump

In this chapter we show that the transition probability in a two-state quantum system can be

controlled efficiently by a new control parameter: a phase jump of the field amplitude, i.e. in

the Rabi frequency. To this end, we present an exact analytical solution of a model with a

Rabi frequency of hyperbolic-secant shape and a phase jump of φ at the time of its maximum.

The detuning is a sum of a constant (static) detuning ∆0 and a hyperbolic-tangent chirp term.

For φ = 0 this model reduces to the Demkov-Kunike (DK) model [11], with its three well-

known special cases: the Rosen-Zener (RZ) [7], Allen-Eberly (AE) [8,9], and Bambini-Berman

(BB) [10] models. For nonzero φ, however, a variety of unexpected features occur. For example,

in the adiabatic limit, the transition probability for φ = 0 is 0 for the RZ model, 1 for the AE

model, and 0.5 for the BB model. For φ = ±π, however, it is 1 for the RZ model, 0 for the AE

model, and again 0.5 for the BB model; for φ = ±π/2 the transition probability for the BB

model oscillates between 0 and 1, as for resonant excitation.

The CPI limit has been discussed for the RZ model for φ = π [44]. This CPI has been

found to be robust against variations in the experimental parameters, a feature reminiscent of

adiabatic passage. The phase-jump CPI mechanism, however, is not adiabatic passage, but it is

induced by a δ-function-shaped interaction (nonadiabatic coupling) in the adiabatic basis. Here

we generalize this result for arbitrary φ, and moreover, we solve the more general phase-step

DK model.

This chapter is organized as follows. We derive the exact analytical solution for the phase-

jump DK model in Sec. 4.1. We then discuss the three important special cases of the RZ, AE

and BB models in Sec. 4.2. We derive the adiabatic solution in Sec. 4.3, which provides a

particularly clear picture of the dependence on φ. We discuss experimental feasibility in Sec.

43
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4.4 and present a summary in Sec. 4.5.

4.1 Demkov-Kunike model with a phase jump

We shall derive the solution of the Schrödinger equation in the interaction representation,

i
d

dt
c1(t) =

1

2
Ω(t)e−iD(t)c2(t), (4.1a)

i
d

dt
c2(t) =

1

2
Ω∗(t)eiD(t)c1(t), (4.1b)

for a model, in which the coupling and the detuning are given by

Ω(t) =





Ω0sech(t/T ) (t < 0)

eiφΩ0sech(t/T ) (t = 0)
, (4.2a)

∆(t) = ∆0 + B tanh(t/T ). (4.2b)

Without loss of generality the constant real frequencies Ω0, ∆0 and B and the pulse width T

will be assumed positive. We shall use the characteristic pulse duration T as the unit of time

and 1/T as the frequency unit. The phase-jump model (4.2) resembles the DK model [11],

where the coupling Ω(t) is a bell-shaped sech function at all times, without the phase jump at

t = 0. We shall therefore follow the derivation of [11] up to time t = 0, where the phase jump

will be dealt with.

The first step is to decouple Eqs. (4.1); we find

c̈1 −
(

Ω̇

Ω
− i∆

)
ċ1 + 1

4
|Ω|2c1 = 0, (4.3)

with the overdot hereafter denoting a time derivative. The next step is to change the indepen-

dent variable from t to z(t) = [1 + tanh(t/T )]/2; then z(−∞) = 0, z(0) = 1
2
, and z(+∞) = 1,

and Eq. (4.3) transforms into

z(1− z)
d2C1

dz2
+

[
1

2
+ i (δ − β)− (1− 2iβ)z

]
dC1

dz
+ α2C1 = 0, (4.4)

where Cn(z) = cn(t(z)) and

α =
Ω0T

2
, β =

BT

2
, δ =

∆0T

2
. (4.5)

Equation (4.4) has the same form as the Gauss hypergeometric equation and its solution can

be expressed in terms of the Gauss hypergeometric function F (λ, µ; ν; z) [40] as

C1(z) = A1F (λ, µ; ν; z) + A2z
1−νF (λ + 1− ν, µ + 1− ν; 2− ν; z), (4.6)
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where A1 and A2 are integration constants and

λ =
√

α2 − β2 − iβ, (4.7a)

µ = −
√

α2 − β2 − iβ, (4.7b)

ν =
1

2
+ i (δ − β) . (4.7c)

By using Eqs. (4.1a), (A.1.2a), (A.1.2b), and the relation eiD = 2−2iβzν− 1
2 (1− z)

1
2
−ν−2iβ one

obtains

C2(z) = i2−2iβ(1− z)1−ν−2iβ

×
[
−A1

α

ν
zνF (λ + 1, µ + 1; ν + 1; z)

+ A2
1− ν

α
F (λ + 1− ν, µ + 1− ν; 1− ν; z)

]
. (4.8)

The constants A1 and A2 are determined from the initial conditions C1(0) and C2(0),

A1 = C1(0), A2 =
−iα22iβ

1− ν
C2(0). (4.9)

The complete solution is expressed by the propagator U(z, 0), which is defined by C(z) =

U(z, 0)C(0), with C(z) = [C1(z), C2(z)]T . The propagator from t → −∞ (z = 0) to time t = 0

(z = 1
2
) reads

U(
1

2
, 0) =


 a −b∗

b a∗


 , (4.10)

where the Cayley-Klein parameters are

a = F (λ, µ; ν;
1

2
), (4.11a)

b = −i
α

2ν
F (1 + λ, 1 + µ; 1 + ν;

1

2
). (4.11b)

For t = 0, a similar derivation as for t < 0 delivers the propagator from t = 0 (z = 1
2
) to

t →∞ (z = 1),

U(1,
1

2
) =


 c∗ −d∗eiφ

de−iφ c


 , (4.12)

with

c = F (λ, µ; 1 + λ + µ− ν;
1

2
), (4.13a)

d = −iαF (1 + λ, 1 + µ; 2 + λ + µ− ν; 1
2 )

2 (1 + λ + µ− ν)
. (4.13b)

The full propagator is U(1, 0) = U(1, 1
2
)U(1

2
, 0), or explicitly

U(1, 0) =


 ac∗ − bd∗eiφ −b∗c∗ − a∗d∗eiφ

bc + ade−iφ a∗c− b∗de−iφ


 . (4.14)
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Figure 4.1: Contour plot of the transition probability P φ
RZ for the RZ model, Eq. (4.19), vs the

peak Rabi frequency Ω0 and the phase jump φ for B = 0 and ∆0 = 2/T .

The transition probability therefore reads

P φ
DK = |U12|2 = |ad|2 + |bc|2 + 2Re(a∗bcd∗eiφ). (4.15)

For φ = 0 (DK model) the transition probability (4.15) can be expressed in terms of elementary

functions [11]

PDK =
cosh(2πβ)− cos(2π

√
α2 − β2)

cosh(2πδ) + cosh(2πβ)
. (4.16)

For φ 6= 0, the transition probability is expressed by the hypergeometric functions of Eqs.

(4.11) and (4.13).

4.2 Special cases

We are going to examine three important special cases of our model, namely when B = 0,

∆0 = 0 and ∆0 = B, which in the absence of a phase jump (φ = 0) represent the RZ [7], AE [8]

and BB [10] models, respectively.
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4.2.1 Rosen-Zener model (B = 0)

In the RZ model (B = 0) Eqs. (4.7) reduce to λ = −µ = α, ν = 1
2

+ iδ. Then, using Eqs.

(A.1.2g) and (A.1.2h), Eqs. (4.11) reduce to

a = c∗ = π1/22−νΓ(ν) (ξ + η) , (4.17a)

b = −d∗ = −iπ1/22−νΓ(ν) (ξ − η) , (4.17b)

with

ξ =
[
Γ

(
1

4
+

1

2
α +

1

2
iδ

)
Γ

(
3

4
− 1

2
α +

1

2
iδ

)]−1

, (4.18a)

η =
[
Γ

(
3

4
+

1

2
α +

1

2
iδ

)
Γ

(
1

4
− 1

2
α +

1

2
iδ

)]−1

. (4.18b)

The transition probability reads

P φ
RZ =

{
[cos πα sin χ− sin πα tanh πδ cos χ] sin

φ

2
+ sin πα sechπδ cos

φ

2

}2

, (4.19)

where

χ = 2 arg
[
Γ

(
1

4
− 1

2
α− 1

2
iδ

)
Γ

(
1

4
+

1

2
α +

1

2
iδ

)]
. (4.20)

For φ = 0 Eq. (4.19) reduces to the RZ formula [7]

PRZ =
sin2 πα

cosh2 πδ
. (4.21)

When φ = ±π, Eq. (4.19) coincides with the transition probability in the step-sech model [44].

When |α + iδ| and δ are large we use Eqs. (A.1.3) and (A.1.4b) to obtain

χ ∼ π

2
+ πα− arctan

δ

α
− 2e−πδ cos 2πα + O(e−2πδ, |α + iδ|−2), (4.22)

and hence

P φ
RZ ∼

[
α√

α2 + δ2

(
1− 2δ

α
e−πδ cos πα

)
sin

φ

2
+ 2e−πδ sin πα cos

φ

2

]2

. (4.23)

The transition probability (4.23) can be represented as a sum of two terms, smooth P and

oscillatory P̃ (vs α),

P φ
RZ = P + P̃ , (4.24a)

P =
α2

α2 + δ2
sin2 φ

2
, (4.24b)

P̃ = − 4αδ

α2 + δ2
e−πδ cos πα sin2 φ

2
+

2α√
α2 + δ2

e−πδ sin πα sin φ. (4.24c)

In the limit of large coupling (α À δ) and sufficiently large detuning (δ & 1) one finds P →
sin2(φ/2), P̃ → 0, and hence the transition probability depends only on the parameter φ.
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Figure 4.2: Contour plot of the transition probability P φ
AE for the AE model vs the peak Rabi

frequency Ω0 and the phase jump φ for ∆0 = 0 and B = 1/T .

The plot in Fig. 4.1 shows the exact transition probability (4.19) as a function of the peak

Rabi frequency Ω0 and the phase jump φ. This plot is reminiscent of the “fitness landscape”

plots in optimal control theory [45]. For zero phase jump the transition probability is given by

the RZ formula (4.21) and it is small because of the relatively large detuning (∆0T = 2). As

the phase φ increases the probability landscape is dominated by oscillations, as evident from

the exact solution (4.19) and the approximation (4.24).

When φ = ±π the probability tends to unity for large Ω0, which leads to complete population

inversion [44] as is easily seen from Eqs. (4.24).

4.2.2 Allen-Eberly model (∆0 = 0)

For the AE model (∆0 = 0), we have ν = 1
2
− iβ. Then, using Eq. (A.1.2f), Eqs. (4.11) and

(4.13) reduce to

a = c =

√
πΓ(ν)

Γ(λ+1
2

)Γ(µ+1
2

)
, (4.25a)

b = d =
2i

α

√
πΓ(ν)

Γ(λ
2
)Γ(µ

2
)
. (4.25b)

The transition probability (4.15) reads

P φ
AE =

(
1− cos2 π

√
α2 − β2

cosh2 πβ

)
cos2 φ

2
. (4.26)
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For φ = 0, Eq. (4.26) reduces to the AE formula [8]

PAE = 1− cos2 π
√

α2 − β2

cosh2 πβ
. (4.27)

Equation (4.26) shows that the phase φ factorizes in the probability. The conditions for

complete population inversion are φ = 0 and
√

α2 − β2 = n+ 1
2
, where n is an integer. Moreover,

for adiabatic evolution (α > β À 1) and φ = 0, the transition probability tends to unity. A

contour plot of the probability (4.26) is presented in Fig. 4.2. For zero jump phase (φ =

0) the transition probability is given by the AE formula (4.27) and exhibits small-amplitude

oscillations that regularly touch unity. As the phase φ departs from zero, the oscillations in the

probability “landscape” gradually decrease.

As the figure demonstrates, and as it is also evident from Eq. (4.26), the transition prob-

ability vanishes identically when φ = ±π. The physical reason is that the Hamiltonian is

then an antisymmetric function of time, which leads to complete population return (symmetry-

forbidden transition) [46].

4.2.3 Bambini-Berman model (∆0 = B)

For the BB model (∆0 = B), the transition probability (4.15), which is plotted in Fig. 4.3,

cannot be expressed by means of simple functions. The probability landscape is dominated by

large-amplitude oscillations, ranging from zero to unity, both versus Ω0 and φ. We see areas

of complete population inversion for φ ≈ ±π/2 and for specific values of Ω0. We shall explain

this unexpected feature in the next section using the adiabatic solution for the DK model.

4.3 Adiabatic solution

We shall now derive the adiabatic solution for the phase-jump DK model (4.2). To this end, it

is convenient to write Eqs. (4.1) in the matrix form

i~
d

dt
c(t) = H(t)c(t), (4.28)

where c(t) = [c1(t), c2(t)]
T and the Hamiltonian, after a (population-preserving) phase trans-

formation, has the form

H =
~
2


 −∆ Ω

Ω∗ ∆


 , (4.29)

The adiabatic states ϕ+ and ϕ− are defined as eigenstates of the Hamiltonian, H(t)ϕ±(t) =

~ε±(t)ϕ±(t), and the eigenvalues are ~ε±(t), with

ε±(t) = ±1

2

√
|Ω(t)|2 + ∆2(t). (4.30)
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Figure 4.3: Contour plot of the transition probability P φ
BB for the BB model vs the peak Rabi

frequency Ω0 and the phase jump φ for B = ∆0 = 1/T .

The amplitudes of the adiabatic states a(t) = [a+(t), a−(t)]T are connected with the diabatic

(original) ones c(t) via the rotating matrix

R(θ) =


 cos θ sin θ

− sin θ cos θ


 (4.31)

as c(t) = R(θ(t))a(t), where θ = 1
2
arctan(Ω/∆). The Schrödinger equation in the adiabatic

basis reads

i~
d

dt
a(t) = Ha(t)a(t), (4.32)

where

Ha = ~


 ε− −iθ̇

iθ̇ ε+


 . (4.33)

If |θ̇| ¿ |ε±| ≡ ε, then the evolution is adiabatic and the solution for the propagator in the

adiabatic basis from an initial time t = ti to a final time t = tf reads

Ua(tf , ti) =


 eiζ 0

0 e−iζ


 , (4.34)

where ζ =
∫ tf

ti
ε(t)dt. The full propagator in the original basis for the model (4.2) reads

U(tf , ti) = Φ∗R(θ(tf ))Ua(tf , 0)R(−θ(0))ΦR(θ(0))Ua(0, ti)R(−θ(ti)), (4.35)
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with

Φ =


 1 0

0 eiφ


 . (4.36)

Rosen-Zener model (B = 0). In this case θ(−∞) = θ(∞) = 0 and θ(0) = 1
2
arctan(α/δ).

The transition probability, obtained as |U12|2 from Eq. (4.35), reads

P a
RZ =

α2

α2 + δ2
sin2 φ

2
, (4.37)

which is equal to the probability (4.23) when δ & 1 (which is the adiabatic condition for the

RZ model).

Allen-Eberly model (∆0 = 0). For this model we have θ(−∞) = π/2, θ(0) = π/4 and

θ(∞) = 0. Hence we obtain from Eq. (4.35)

P a
AE = cos2 φ

2
, (4.38)

which coincides with the probability (4.26) when α > β À 1 (which is the adiabatic condition

for the AE model).

Bambini-Berman model (B = ∆0). In this case, θ(−∞) = π/4, θ(0) = 1
2
arctan(α/β) and

θ(∞) = 0. We obtain from Eq. (4.35)

P a
BB =

1

2
+

1

2
sin 2ζ0 sin 2θ(0) sin φ− 1

2
cos 2ζ0 sin 4θ(0) sin2 φ

2
, (4.39)

where ζ0 =
∫ 0

−∞
1
2

√
Ω2(t) + ∆2(t)dt. For α À β, θ(0) ≈ π/4− β/2α and Eq. (4.39) reduces to

P a
BB ≈

1

2
+

1

2
sin 2ζ0 sin φ− β

α
cos 2ζ0 sin2 φ

2
. (4.40)

Now, when φ = ±π/2 the probability oscillates between zero and unity. From Eq. (4.40) we

also see that there is an asymmetry in the maxima and minima for φ = π/2 and φ = −π/2, as

seen in Fig. 4.3.

In Fig. 4.4 we compare the adiabatic solution (4.39) with the exact solution (4.15) for the

transition probability vs the peak Rabi frequency Ω0. We see that the adiabatic solution is

indiscernible from the exact solution except for small values of Ω0. For φ = 0 the adiabatic

solution gives a constant transition probability of 1
2
. For φ = ±π

2
it oscillates between zero

and unity and finally, for φ = π the transition probability tends to 1
2

in an oscillatory fashion.

The difference between the manner the asymptotic value of 1
2

is reached for φ = 0 and φ = π,

which is observed if Fig. 4.4, is easily revealed upon a closer inspection of the adiabatic solution

(4.39). Indeed, for φ = 0 only the first term of 1
2

survives, whereas for φ = π also the last term

with sin2(φ/2) is present and it generates oscillations in the transition probability.
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Figure 4.4: Comparison between the exact solution (solid curve) and the adiabatic solution

(4.39) (dashed curve) for the Bambini-Berman model (with B = ∆0 = 3/T ) as a function of

the peak Rabi frequency Ω0 for φ = 0, φ = ±π/2 and φ = π.

4.4 Experimental implementation

The phase step in the time dependence of the Rabi frequency (4.2a) can be realized by modern

femtosecond pulse-shaping technology [17, 28, 47]. The Fourier transform of the pulse (4.2a) is

(up to a global phase factor eiφ/2)

Ω̃(ω) =

√
π

2

cos (φ/2)

cosh (πω/2)
+

sin (φ/2)√
2π

Im

[
ψ

(
3 + iω

4

)
− ψ

(
1 + iω

4

)]
, (4.41)

where ψ(z) is the psi (polygamma) function [48]. This Fourier transform is shown in Fig. 4.5

for phase jumps of φ = 0, π/2 and π. The phase jump in the temporal domain makes the

Fourier spectrum asymmetric. It is important that this spectrum is modulated by a (rapidly

vanishing) pulse-shaped (sech) function of ω, which confines the Fourier spectrum within a

limited frequency range. Such a spectrum can therefore be easily produced by modern pulse

shapers.

4.5 Conclusions

In this chapter, we have presented an analytically exactly soluble two-state model, in which

the time-dependent interaction has a hyperbolic-secant pulse shape, with a phase jump of φ at
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Figure 4.5: Fourier transform of the sech pulse for a jump phase of 0, π/2 and π.

the time of its maximum. The detuning has a constant part and a hyperbolic-tangent chirp

term. For φ = 0, this model reduces to the Demkov-Kunike model, which in turn contains

as particular cases three other well-known models: the RZ, AE and BB models. A nonzero φ

induces dramatic changes in the transition probability, from complete population inversion to

complete population return. The analytic results are particularly transparent in the adiabatic

limit, which demonstrate that complete population inversion can always occur for a suitable

choice of φ: for φ = ±π in the RZ model, for φ = 0 in the AE model, and for φ = ±π/2 in

the BB model. The phase φ can therefore be used as a control parameter for the two-state

transition probability. Moreover, φ can serve as a control parameter also when the jump occurs

at any other instant of time. However, the present choice of jump at t = 0 is the simplest and

most natural choice.

The phase effects reported here are not limited to the sech pulse shape or the tanh fre-

quency chirp, as it is evident from the adiabatic solution. For instance, these effects can be

demonstrated by Gaussian pulses.

In conclusion, the exact solution derived in this chapter, supported by the adiabatic solution

applicable to more general time dependences, clearly demonstrates that a single phase jump in

the driving field can be used as an efficient control tool for quantum state engineering. In a

future publication we shall describe how phase jumps can be used to steer population transfer

in multistate systems.



Chapter 5

Exactly soluble two-state quantum

models with linear couplings

Among the exactly soluble models, the Landau-Zener (LZ) model is undoubtedly the most

popular one, for it provides a very simple expression for the transition probability across a level

crossing. This simplicity is somewhat surprising because the straightforward derivation uses

Weber’s parabolic cylinder functions, which in the end reduce to a simple exponent. (The LZ

phases, though, are more complicated and involve Gamma functions.) One of the unresolved

mysteries of the LZ model is that despite its very simple time dependences – linearly changing

energies and a constant interaction of infinite duration – it often provides much more accurate

results than expected when applied to real physical systems with sophisticated time depen-

dences. Another puzzle is that, when applied to the LZ model, various approximations, such as

the Dykhne-Davis-Pechukas approximation [32] and the quasistationary adiabatic-elimination

approximation [23], produce the exact result.

In this chapter we use the LZ solution in a different manner: to derive a new class of exact

analytical solutions to the two-state problem when the coupling is a linear function of time

and the detuning is constant. Because the coupling and the detuning in our model exchange

their time dependences in comparison to the LZ model, the Hamiltonians, and the respective

propagators, in our model and the LZ model are connected by a basis rotation at an angle π/4.

We use this rotation to derive the propagator and the transition probability for our model in

terms of sums of products of Weber functions. We apply this solution to four special cases of

physical interest: shark, double-shark, tent and zigzag pulses, each of which exhibits distinctive

physical features. In order to reveal these features, we apply two types of asymptotics of the

Weber function and derive simpler expressions in terms of elementary functions.

This chapter is organized as follows. We derive the exact analytical solution of the Schrödinger

54
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equation for our general model in Sec. 5.1. In Secs. 5.2-5.5 we present the shark, double-shark,

tent and zigzag models. In Sec. 5.6 we derive the respective adiabatic solutions. The conclu-

sions are summarized in Sec. 5.7.

5.1 Exact solution

The time evolution of a coherently driven two-state quantum system is described by two coupled

ordinary differential equations for the probability amplitudes C1(t) and C2(t) of states ψ1 and

ψ2,

i~
d

dt
C(t) = H(t)C(t). (5.1)

where C(t) = [C1(t), C2(t)]
T is a column vector with the probability amplitudes and

H(t) =
~
2


 −∆(t) Ω(t)

Ω(t) ∆(t)


 . (5.2)

We shall derive the solution of Eqs. (5.1) for a model, in which the coupling and the

detuning are given by

Ω(t) =





β2t for ti ≤ t ≤ tf ,

0 elsewhere,
(5.3a)

∆(t) = ∆0, (5.3b)

where β and ∆0 are assumed positive without loss of generality (our main concern will be the

transition probability, which does not depend on the signs of β and ∆0). The turn-on time

ti and the turn-off time tf can be positive, negative or zero. The model (5.3) resembles the

exactly soluble LZ model [6], where the detuning is a linear function of time and the coupling

is constant; here their time dependences are interchanged. The two models are related to each

other by a basis rotation at an angle π/4,

C̃(t) = R(π/4)C(t), (5.4)

where C̃(t) = [C̃1(t), C̃2(t)]
T are the probability amplitudes in the LZ model and R is the

rotation matrix

R(θ) =


 cos θ sin θ

− sin θ cos θ


 . (5.5)

The LZ Hamiltonian reads H̃(t) = R(π/4)H(t)R(−π/4), or

H̃(t) =
~
2


 β2t ∆0

∆0 −β2t


 . (5.6)
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The elements of the ensuing LZ propagator Ũ read [49]

Ũ11(tf , ti) =
Γ(1 + iδ2)√

2π

[
D−iδ2(αfe

iπ/4)D−1−iδ2(αie
−3iπ/4)

+ D−iδ2(αfe
−3iπ/4)D−1−iδ2(αie

iπ/4)
]
, (5.7a)

Ũ12(tf , ti) =
Γ(1 + iδ2)

δ
√

2π
e−iπ/4

[
D−iδ2(αfe

iπ/4)D−iδ2(αie
−3iπ/4)

− D−iδ2(αfe
−3iπ/4)D−iδ2(αie

iπ/4)
]
, (5.7b)

Ũ21(tf , ti) = −Ũ∗
12(tf , ti), (5.7c)

Ũ22(tf , ti) = Ũ∗
11(tf , ti), (5.7d)

where Dν(z) is Weber’s parabolic cylinder function [40] and we have introduced the dimension-

less parameters

αi = βti, αf = βtf , δ =
∆0

2β
. (5.8)

The parameters αi and αf are related to the temporal pulse areas Ai = α2
i /2 and Af = α2

f/2,

respectively, from time t = 0 to time ti or tf .

The propagator of our system U, defined by the relation C(tf ) = U(tf , ti)C(ti), is connected

to the LZ propagator Ũ as U(tf , ti) = R(−π/4)Ũ(tf , ti)R(π/4); explicitly

U(tf , ti) =


 ReŨ11 − iImŨ12 ReŨ12 + iImŨ11

−ReŨ12 + iImŨ11 ReŨ11 + iImŨ12


 . (5.9)

Therefore the transition probability is

P = |U21|2 = (ReŨ12)
2 + (ImŨ11)

2. (5.10)

Two asymptotic behaviors are of particular interest: (i) the large area and small detuning

(α À δ, 1) asymptotics (to be referred to as asymptotics I ), and (ii) the large area and large

detuning (α, δ À 1) asymptotics (to be referred to as asymptotics II ), with α = |αi| or αf .

The (perturbation theory) limit of small areas (α ¿ 1) is not interesting for it produces

a very small transition probability; interesting features appear for sufficiently strong fields.

According to Eqs. (5.7), asymptotics I requires the conventional large-argument asymptotics

of the Weber function [40]. Asymptotics II requires the lesser known large-argument-and-

large-order asymptotics of the Weber function, which has been derived by Olver in the general

case [50]; the explicit expressions [49] for the particular Weber functions involved in the LZ

model are supplied in the Appendix.

In the next sections we will consider four exactly soluble models of physical interest, which

are special cases, or variations, of the above model. The detuning is constant in all cases and

the Rabi frequencies of these models are shown in Fig. 5.1.
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Figure 5.1: Time dependences of the Rabi frequencies of the models considered in this chapter.

(a) shark pulse; (b) double-shark pulse; (c) tent pulse; (d) zigzag pulse.

5.2 Shark pulse

We begin with a model in which the interaction begins at time ti = 0 and ends at time

tf = τ > 0, thereby forming a triangular “shark fin” pattern, as illustrated in Fig. 5.1(a). By

using Eq. (A.2.6) the LZ propagator elements (5.7) become Ũ11(τ, 0) = a and Ũ12(τ, 0) = b,

with

a =
2iδ2/2

2
√

π
Γ(1

2
+ 1

2
iδ2)

[
(1 + e−πδ2

)D−iδ2(αeiπ/4)

− i
√

2π

Γ(iδ2)
e−πδ2/2D−1+iδ2(αe−iπ/4)

]
, (5.11a)

b =
2iδ2/2

δ
√

2π
Γ(1 + 1

2
iδ2)e−iπ/4

[
(1− e−πδ2

)D−iδ2(αeiπ/4)

+
i
√

2π

Γ(iδ2)
e−πδ2/2D−1+iδ2(αe−iπ/4)

]
, (5.11b)

with α = βτ . The shark propagator reads U(τ, 0) = U , with

U =


 Rea− iImb Reb + iIma

−Reb + iIma Rea + iImb


 . (5.12)

We shall use this propagator U to express the propagators for the other three models in the

next sections. The exact transition probability for the shark model is

P = (Ima)2 + (Reb)2. (5.13)
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Figure 5.2: The transition probability for a shark pulse vs the dimensionless parameter α for

δ = 1.5. The solid curve shows the exact values (5.13), the short-line dashed curve shows

asymptotics I (5.14) and the long-line dashed curve is asymptotics II (5.16).

Asymptotics I for the transition probability is derived by using Eq. (A.2.7),

P ∼ 1
2
(1− e−πδ2

) cos2 φ1 + 1
2
(1 + e−πδ2

) sin2 φ2

− δ

α

√
1− e−2πδ2 cos (φ1 − φ2) (α À 1, δ), (5.14)

where

φ1 = arg Γ(1− 1
2
iδ2) +

α2

4
+

δ2

2
ln

α2

2
+

π

4
, (5.15a)

φ2 = arg Γ(1
2
− 1

2
iδ2) +

α2

4
+

δ2

2
ln

α2

2
. (5.15b)

We conclude that for large α the transition probability oscillates vs α with an amplitude

depending on δ: for small δ (δ . 1) the oscillation amplitude is large, while for large δ it

decreases rapidly. These oscillations can be seen in Fig. 5.2 where the transition probability is

plotted as a function of α. The asymptotics (5.14) is seen to match the exact values increasingly

well as α increases.

Asymptotics II for P is derived by using Eqs. (A.2.9),

P ∼ 1
2
− δ√

α2 + 4δ2
(α, δ À 1). (5.16)

This expression, and the comparison with Eq. (5.14), demonstrate that the increasing δ damps

the oscillations. In the limit α À δ À 1, we find P ∼ 1
2
− δ/α, that is the probability tends
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Figure 5.3: The transition probability for a shark pulse vs the dimensionless parameter δ for

α = 15. The solid curve shows the exact values (5.13), the short-line dashed curve is asymptotics

I (5.14) and the long-line dashed curve is asymptotics II (5.16).

to 1
2
, a characteristic feature for asymmetric pulses in the adiabatic limit [51]. The same result

can be obtained from Eq. (5.14) if we demand δ À 1 and use the Stirling asymptotics for the

Gamma functions [40] in the phases φ1 and φ2 to find

φ1 − φ2 ∼ 1

4δ2
(δ À 1). (5.17)

On the contrary, in the limit δ À α À 1, we find P ∼ α2/16δ2; hence the probability vanishes

as δ−2 as δ increases. This latter feature is characteristic for models (e.g., the Rabi model) in

which the coupling has sudden changes (discontinuities), such as the sudden termination of the

shark pulse at tf = τ . This feature is illustrated in Fig. 5.3 where the transition probability is

plotted as a function of δ. The small-δ asymptotics (5.14) is seen to provide a good fit to the

exact values in its domain of validity. The large-δ asymptotics (5.16) describes very accurately

the average value of P in both Figs. 5.2 and 5.3.

5.3 Double-shark pulse

We now turn to the double-shark pulse, for which ti = −τ and tf = τ , as displayed in Fig.

5.1(b). To find the propagator for this model we separate the interaction into two parts: from

ti = −τ to t = 0, and from t = 0 to tf = τ . The propagator U(τ, 0) in the interval [0, τ ] is

the same as the one (5.12) for the shark pulse in the preceding section, U(τ, 0) = U . From
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Figure 5.4: The transition probability for a double-shark pulse vs the dimensionless parameter

α for δ = 0.5. The solid curve shows the exact values (5.19) and the dashed curve is asymptotics

I (5.20).

the symmetry of the Schrödinger equation it can easily be shown that the propagator for the

interval [−τ, 0] is expressed with the help of the Pauli matrix σ3 as U(0,−τ) = σ3 U T σ3. The

full propagator reads U(τ,−τ) = U(τ, 0)U(0,−τ) = U σ3 U T σ3, or explicitly,

U(τ,−τ) =


 (Rea− iImb)2 − (Reb + iIma)2 2(ReaReb− ImaImb)

−2(ReaReb− ImaImb) (Rea + iImb)2 − (Reb− iIma)2


 . (5.18)

The exact transition probability is therefore

P = 4(ReaReb− ImaImb)2. (5.19)

We point out that the transition probability for this pulse can be derived directly from

the general formulae (5.7) and (5.10) because the double-shark model is a special case of the

general model (5.3) for ti = −τ and tf = τ . However, the approach we use is more instructive

and applicable to the other models that follow.

Asymptotics I for P is derived by using Eq. (A.2.7),

P ∼
[√

1− e−2πδ2 cos(φ1 + φ2)− 2δe−πδ2

α

]2

(α À 1, δ). (5.20)

This asymptotics is shown in Fig. 5.4 versus α and compared with the exact solution (5.19).

The oscillations in Eq. (5.20) have an amplitude which tends to a constant value when α

increases; this value is determined by δ.
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Figure 5.5: The transition probability for a double-shark pulse vs the dimensionless parameter

δ for α = 7. The solid curve shows the exact values (5.19), the short-line dashed curve is

asymptotics I (5.20) and the long-line dashed curve is asymptotics II (5.21) (barely discernible).

Asymptotics II is obtained by using Eqs. (A.2.9),

P ∼ α2

α2 + 4δ2
cos2

(
α

2

√
α2 + 4δ2 + 2δ2 ln

α +
√

α2 + 4δ2

2δ

)
(α, δ À 1); (5.21)

hence the oscillations survive even for large δ. The oscillation amplitude is damped vs δ in a

Lorentzian manner. On the contrary, it approaches unity as α increases; the same result follows

from Eq. (5.20) in the limit α À δ À 1.

The transition probability P is plotted in Fig. 5.5 as a function of δ. An excellent agreement

is observed between the asymptotics (5.20) and (5.21) and the exact values.

The oscillations that dominate both Figs. 5.4 and 5.5 originate from the presence of two

clearly separated parts of the interaction: one for t < 0 and another for t > 0, which is

reminiscent of Ramsey-type interference. This feature is the physical reason for the presence

of considerably more oscillations for the double-shark pulse compared to the shark pulse.

The double-shark pulse is remarkable in another aspect: it has a zero pulse area. Such

pulses produce no excitation on resonance (δ = 0). However, they can produce considerable

excitation off resonance; this problem has been studied in detail elsewhere [44, 52]. Indeed,

as visible in both Figs. 5.4 and 5.5, for suitable values of the detuning and the coupling, the

transition probability may even reach unity.
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Figure 5.6: The transition probability for a tent pulse vs the dimensionless parameter α for

δ = 1. The solid curve depicts the exact values (5.23) and the dashed curve is asymptotics I

(5.24).

5.4 Tent pulse

The tent model is not a special case of the model (5.3), but has a linear coupling with a positive

slope from ti = −τ to t = 0 and a negative slope (with the same absolute value) from t = 0 to

tf = τ , as shown in Fig. 5.1(c). As in Sec. 5.3, we exploit the symmetry of the Schrödinger

equation to find U(0,−τ) = U and U(τ, 0) = U T . The full propagator is U(τ,−τ) = U T U ,

or explicitly,

U(τ,−τ) =


 (Rea− iImb)2 + (Reb− iIma)2 2i(ReaIma− RebImb)

2i(ReaIma− RebImb) (Rea + iImb)2 + (Reb + iIma)2


 . (5.22)

The exact transition probability reads

P = 4(ReaIma− RebImb)2. (5.23)

Asymptotics I for P is derived by using Eq. (A.2.7),

P ∼ 1
4

[
(1− e−πδ2

) sin 2φ1 − (1 + e−πδ2

) sin 2φ2

]2

(α À 1, δ). (5.24)

The amplitude of the oscillations in Eq. (5.24) is constant vs α, as indeed seen in Fig. 5.6 for

large α. A good agreement is observed between the exact probability (5.23) and its asymptotics

(5.24).
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Figure 5.7: The transition probability for a tent pulse vs the dimensionless parameter δ for

α = 7. The solid curve shows the exact values (5.23), the short-line dashed curve is asymptotics

I (5.24) and the long-line dashed curve is asymptotics II (5.25).

Asymptotics II is obtained by using Eqs. (A.2.9); it reads

P ∼ 1

16δ4
cos2

(
α

2

√
α2 + 4δ2 + 2δ2 ln

α +
√

α2 + 4δ2

2δ

)
(α, δ À 1). (5.25)

The transition probability P decreases vs δ as δ−4, i.e. faster than for the shark and double-

shark pulses, where P ∼ δ−2. The reason is the absence of a discontinuity in the Hamiltonian

for the tent pulse; however, there is a discontinuity in the adiabatic basis, which results in the

polynomial δ−4-dependence. The rapid decrease of these oscillations vs δ is indeed observed in

Fig. 5.7. A very good agreement between the exact probability (5.23) and the asymptotics is

found once again.

5.5 Zigzag pulse

The zigzag pulse, seen in Fig. 5.1(d), has a linearly increasing coupling from ti = −τ to t = 0,

with a sudden sign jump at t = 0, followed by another linear change from t = 0 to tf = τ . From

the symmetry of the Schrödinger equation, as in Secs. 5.3 and 5.4, we find U(0,−τ) = U and

U(τ, 0) = σ3 U T σ3. The full propagator is U(τ,−τ) = σ3 U T σ3 U ; explicitly,

U(τ,−τ) =


 (Rea− iImb)2 − (Reb− iIma)2 2(ReaReb + ImaImb)

−2(ReaReb + ImaImb) (Rea + iImb)2 − (Reb + iIma)2


 . (5.26)
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Figure 5.8: The transition probability for a zigzag pulse vs the dimensionless parameter α

for δ = 2. The solid curve is the exact probability (5.27) and the long-line dashed curve is

asymptotics II (5.29).

Hence the exact transition probability reads

P = 4(ReaReb + ImaImb)2. (5.27)

Asymptotics I for P is obtained by using Eq. (A.2.7),

P ∼
{√

1− e−2πδ2 cos(φ1 − φ2)

+
δ

α

[
(1− e−πδ2

) cos 2φ1 − (1 + e−πδ2

) cos 2φ2

]}2

(α À 1, δ). (5.28)

Asymptotics II is obtained by using Eqs. (A.2.9); it reads

P ∼ α2

α2 + 4δ2
(α, δ À 1). (5.29)

The transition probability P is plotted in Fig. 5.8 as a function of α; it exhibits damped

oscillations and tends to a value that depends on δ; for sufficiently large δ this value is close to

unity. The asymptotics (5.29) describes very accurately the mean value of P .

Figure 5.9 shows P as a function of δ. The asymptotics (5.28) and (5.29) match very well

the exact solution (5.27) once again. The Lorentzian decrease of P vs δ is a consequence of the

discontinuity at time t = 0.

There is an interesting feature of this model, visible in Eq. (5.29): when α À δ À 1

we have P → 1, which implies CPI. This CPI is caused by a δ-function-shaped nonadiabatic
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Figure 5.9: The transition probability for a zigzag pulse vs the dimensionless parameter δ for

α = 15. The solid curve shows the exact probability (5.27), the short-line dashed curve is

asymptotics I (5.28) and the long-line dashed curve is asymptotics II (5.29).

coupling in the adiabatic basis as discussed elsewhere [44, 52]; it is encountered here too. A

nearly complete inversion is seen in Fig. 5.9 for δ ≈ 1 to 3. For this CPI, both conditions

δ À 1 and α À δ are essential; because α is only moderately large (α = 15), these conditions

are satisfied approximately only in a limited range of δ.

5.6 Adiabatic solution

We shall now derive the adiabatic solution for the general model (5.3) and the other four

special models above. The adiabatic states ϕ+(t) and ϕ−(t) are defined as the eigenstates of

the Hamiltonian (5.2), H(t)ϕ±(t) = ~ε±(t)ϕ±(t), with eigenvalues ~ε±(t) = ±~ε(t), where

ε(t) = 1
2

√
Ω2(t) + ∆2(t). (5.30)

The amplitudes of the adiabatic states A(t) = [A+(t), A−(t)]T are connected with the original

ones C(t) via the rotation matrix (5.5) as C(t) = R(θ(t))A(t), where θ(t) = 1
2
arctan[Ω(t)/∆].

The Schrödinger equation in the adiabatic basis reads

i~
d

dt
A(t) = HA(t)A(t), (5.31)

where

HA = ~


 ε− −iθ̇

iθ̇ ε+


 . (5.32)
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If |θ̇| ¿ ε, then the evolution is adiabatic and the solution for the propagator in the adiabatic

basis from time ti to time tf reads

UA(tf , ti) =


 eiζ 0

0 e−iζ


 , (5.33)

where

ζ =

∫ tf

ti

ε(t)dt =
[

1
4
α
√

4δ2 + α2 + δ2 ln(α +
√

4δ2 + α2)
]αf

αi

. (5.34)

The full propagator in the original basis for the model (5.3) reads

Uadiab(tf , ti) = R(θf )UA(tf , ti)R(−θi), (5.35)

with θi,f = θ(ti,f ). The adiabatic transition probability in the original basis is

Padiab = 1
2
− 1

2

∆2

ε(ti)ε(tf )
− 1

2

Ω(ti)Ω(tf )

ε(ti)ε(tf )
cos 2ζ. (5.36)

Shark model (ti = 0). The adiabatic transition probability of this model reads

Padiab = 1
2
− δ√

α2 + 4δ2
, (5.37)

which coincides with asymptotics II (5.16).

Double-shark model (ti = −tf ). For this model we find

Padiab =
α2

α2 + 4δ2
cos2 ζ, (5.38)

which is equal to asymptotics II (5.21).

Tent model. For this model, the adiabatic solution reads

Padiab = 0. (5.39)

Zigzag model. In this model we have to account for the jump in Ω(t) at t = 0, see Fig.

5.1(d). This discontinuity causes a delta-function behaviour of the nonadiabatic coupling θ̇(t)

in the same point t = 0, which in turn causes a transition between the adiabatic states with

an area equal to the area of the delta-function feature, which is θ0 = arctan(α/2δ). The

propagator that describes this transition in the adiabatic basis is R(θ0). Hence the propagator

UA(tf , ti) in Eq. (5.35) is split by this transition and should be replaced by the sandwich

UA(tf , 0)R(θ0)UA(0, ti). Hence the propagator in the original basis reads

Uadiab(tf , ti) = R(θf )UA(tf , 0)R(θ0)UA(0, ti)R(−θi). (5.40)

with θf = θi = 0 now. After simple algebra the transition probability is obtained as

Padiab =
α2

α2 + 4δ2
, (5.41)
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which is the same as asymptotics II (5.29).

It is evident from the above results that the adiabatic solution coincides with asymptotics

II, which required α, δ À 1. A closer inspection of the adiabatic condition reveals that the

adiabatic condition |θ̇(t)| ¿ ε(t) translates into 2δ ¿ (β2t2 + 4δ2)3/2. We notice that this

condition is satisfied least well for t = 0; there the adiabatic condition reduces to

4δ2 À 1. (5.42)

Hence, even only a moderately large δ (δ & 1) is sufficient to enforce adiabatic evolution.

The apparent discrepancy for the tent model, where the adiabatic solution produces a null

probability, indicates that the respective asymptotics II (5.25) is of superadiabatic nature.

5.7 Conclusions

In this chapter, we have presented an analytically exactly soluble two-state model, in which

the Rabi frequency is a linear function of time with a finite duration and the detuning is

constant. This model is reminiscent of the famous Landau-Zener model where, however, the

Rabi frequency is constant and the detuning is linear. Because the Hamiltonians, and the

propagators, for these two models are related to each other by a basis rotation at an angle of

π/4, we have used the known LZ solution to derive the propagator for the present model. The

exact evolution matrix in the general case is expressed in terms of sums of products of parabolic

cylinder functions Dν(z).

We point out here that, without the basis rotation, the straightforward solution of the

Schrödinger equation (5.1) leads to the Heun equation, and hence the propagator is expressed

in terms of the Heun function; the latter is, however, much less studied than the Weber function

and little is known, for instance, about its asymptotic expansions. In fact, the two approaches,

with and without a basis rotation, allow one to derive interesting representations of the Heun

functions as sums of products of Weber functions, unknown hitherto; this topic, however, lies

outside the scope of this chapter and will be discussed elsewhere.

Several approximations in terms of simpler functions have been derived based on (i) the

large-argument asymptotics of Dν(z), and (ii) the large-argument-and-large-order asymptotics

of Dν(z). The former of these corresponds to a peak Rabi frequency much larger than the

detuning and the inverse time duration 1/τ , whereas the latter requires that the peak Rabi

frequency and the detuning are simultaneously much larger than 1/τ . These approximations

have been applied to several physically distinct models. The shark pulse is an example of an

asymmetric pulse. The antisymmetric double-shark pulse is an example of a pulse with zero
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area, and also a pulse composed of two separated parts, similar to a Ramsey interferometer.

The tent model is an example of a symmetric pulse, which experiences complete population

return in the adiabatic limit. Finally, the zigzag model has a sign jump in the coupling at t = 0;

it produces complete population inversion for sufficiently large Rabi frequency and detuning,

despite its overall zero pulse area. All derived asymptotics fit very accurately the exact values

in the relevant domains.



Chapter 6

Navigation between quantum states by

quantum mirrors

Quantum state engineering in atoms and molecules traditionally uses three basic techniques

for transfer of population, complete or partial, from one bound energy state to another, single

or superposition state: resonant pulses of precise areas (e.g. π pulses in a two-state system or

generalized π pulses for multiple states) [1], adiabatic passage using one or more level crossings

[15], or stimulated Raman adiabatic passage (STIRAP) and its extensions [21]. All these

techniques require the system to be initially in a single energy state; such a state can be easily

prepared experimentally, e.g. by optical pumping. Some of these techniques are “tuned” to a

specific initial condition: for example, STIRAP requires a counterintuitive pulse sequence to

transfer population from state 1 to 3 in a 1-2-3 linkage, but it is largely irrelevant if the system

starts in states 2 or 3 (with some exceptions for state 3) [21]. In other words, STIRAP is (very)

useful in producing only one column (the first) of the unitary propagator. Similar conclusions

apply, to a large extent, also to the other two techniques using pulse areas and level crossings.

These traditional techniques resolve only a small (although important) part of the general

problem of quantum state engineering: given the initial and final states of an N -state system,

find a physical set of operations that connect them. This problem requires the construction of

the entire propagator, not just a single column or row.

In this chapter we introduce a technique for full quantum state engineering, which produces

in a systematic manner a propagator that can connect any two preselected superposition states

of an N -state quantum system, representing a qunit in quantum information [3, 4]. The two

states can be pure as well as mixed, and the latter may have the same or different sets of dynamic

invariants (constants of motion). The solution consists of two steps: first, find a propagator

that connects the two states, and second, find a physical realization of this propagator.

69
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The first part is the mathematical solution of this inverse problem in quantum mechanics,

and the solution is different for three types of problems: (i) pure-to-pure states; (ii) mixed-to-

mixed states with the same invariants; (iii) mixed-to-mixed states with different invariants. The

case (iii), for instance, contains the important problem of engineering an arbitrary preselected

mixed state and we pay special attention to it. In this latter respect our exact analytic results

are alternative to the (approximate) numeric optimization procedure proposed by Karpati et

al [53]; moreover, our approach allows one to engineer any preselected mixed state, whereas

the method of Karpati et al [53] can only produce a class of mixed states.

The second part of the solution is the physical realization of the respective propagator.

For this we use the recently introduced physical implementation of the quantum Householder

reflection (QHR) [39, 54] and we show that QHR is a very powerful tool for quantum state

engineering. Remarkably, in case (i) only a single QHR is needed to connect two pure states.

In case (ii), a general U(N) propagator is necessary in the general case, which requires N

QHRs. In case (iii), some sort of incoherent process is required in order to equalize the different

dynamic invariants of the initial and final mixed states, and the remaining coherent U(N) part

is realized by QHRs. We describe the use of two such incoherent processes: pure dephasing

and spontaneous emission.

The Householder reflection [55] is a powerful and numerically very robust unitary trans-

formation, which has many applications in classical data analysis, e.g., in solving systems of

linear algebraic equations, finding eigenvalues of high-dimensional matrices, least-square op-

timization, QR decomposition, etc. [56]. In its quantum mechanical implementation [39, 54]

it consists of a single interaction step involving N simultaneous pulsed fields of precise areas

and detunings in an N -pod linkage pattern, wherein the N states of our system are coupled to

each other via an ancillary excited state, as displayed in Fig. 6.1. We use two types of QHRs:

standard and generalized; the latter involves an additional phase factor. The standard QHR

can operate on or off resonance, whereas the generalized QHR requires specific detunings. Any

unitary matrix can be decomposed into (and therefore, synthesized by) N − 1 standard QHRs

and a phase gate, or into N generalized QHRs, without a phase gate; hence only N physical

operations are needed, which allows one to greatly reduce the number of physical steps, from

O(N2) in existing U(2) realizations [57] to only O(N) with QHRs.

This chapter is organized as follows. In Sec. 6.1 we review the standard and generalized

QHR gates and their physical implementations. In Sec. 6.2 we show how two pure states can be

connected by means of standard and generalized QHRs. In Sec. 6.3 we construct the propagator

connecting two arbitrary mixed states with the same dynamic invariants. Engineering of an

arbitrary preselected mixed qunit state is presented in Sec. 6.4. The conclusions are summarized
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Figure 6.1: Physical realization of the quantum Householder reflection: N degenerate (in RWA

sense) ground states, forming the qunit, coherently coupled via a common excited state by

pulsed external fields of the same time dependence and the same detuning, but possibly different

amplitudes and phases.

in Sec. 6.5.

6.1 Quantum Householder Reflection

6.1.1 Definition

The standard QHR is defined as

M(v) = I− 2 |v〉 〈v| , (6.1)

where I is the identity operator and |v〉 is an N -dimensional normalized complex column-

vector. The QHR (6.1) is both hermitian and unitary, M = M
†
= M−1, which means that M

is involutary, M2 = I. In addition, detM = −1. For real |v〉 the Householder transformation

(6.1) has a simple geometric interpretation: reflection with respect to an (N − 1)-dimensional

plane with a normal vector |v〉. In general, the vector |v〉 is complex and it is characterized by

2N − 2 real parameters (with the normalization condition and the unimportant global phase

accounted for).

The generalized QHR is defined as

M(v; ϕ) = I +
(
eiϕ − 1

) |v〉 〈v| , (6.2)

where ϕ is an arbitrary phase. The standard QHR (6.1) is a special case of the generalized QHR

(6.2) for ϕ = π: M(v; π) ≡ M(v). The generalized QHR is unitary, M(v; ϕ)−1 = M(v; ϕ)† =

M(v;−ϕ), and its determinant is detM = eiϕ.
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6.1.2 Physical implementation

We have shown recently [39, 54] that the standard and generalized QHR operators can be

realized physically in a coherently coupled N -pod system shown in Fig. 6.1. The N degenerate

[in the rotating-wave approximation (RWA) sense [1]] ground states |n〉 (n = 1, 2, . . . , N), which

represent the qunit, are coupled coherently by N external fields to an ancillary, excited state

|e〉 ≡ |N + 1〉 [39]. The excited state |e〉 can generally be off resonance by a detuning ∆ (t) [39],

which must be the same for all fields. The Rabi frequencies Ω1(t), . . . , ΩN(t) of the couplings

between the ground states and the excited state have the same pulse-shaped time dependence

f (t), but possibly different phases βn and amplitudes χn,

Ωn(t) = χnf (t) eiβn (n = 1, 2, . . . , N). (6.3)

The qunit+ancilla RWA Hamiltonian reads

H(t) =
~
2




0 0 · · · 0 Ω1 (t)

0 0 · · · 0 Ω2 (t)
...

...
. . .

...
...

0 0 · · · 0 ΩN (t)

Ω∗
1 (t) Ω∗

2 (t) · · · Ω∗
N (t) 2∆ (t)




, (6.4)

The exact solution to the Schrödinger equation for the propagator U(t),

i~
d

dt
U(t) = H(t)U(t). (6.5)

can be found in [39].

The standard QHR M(v) is realized on exact resonance (∆ = 0), for any pulse shape f (t),

and for root-mean-square (rms) pulse area

A = 2 (2k + 1) π (k = 0, 1, 2, . . .) , (6.6)

where

A =

∫ ∞

−∞
Ω(t)dt, (6.7)

with Ω(t) =
[∑N

n=1 |Ωn(t)|2
]1/2

. Then the transition probabilities to the ancilla state vanish

and the propagator within the qunit space is given exactly by the standard QHR M(v) (6.1).

The components of the N -dimensional normalized complex vector |v〉 are the Rabi frequencies,

with the accompanying phases [54],

|v〉 =
1

χ

[
χ1e

iβ1 , χ2e
iβ2 , . . . , χNeiβN

]T
, (6.8)



6.1. Quantum Householder Reflection 73

where χ =
(∑N

n=1 χ2
n

)1/2

. Hence the qunit propagator represents a physical realization of the

standard QHR in a single interaction step. Any QHR vector (6.8) can be produced on demand

by appropriately selecting the peak couplings χn and the phases βn of the external fields.

The generalized QHR M(v; ϕ) can be realized in the same N -pod system, but for specific

detunings off resonance. Again the transition probabilities to the ancilla state must vanish; the

corresponding rms pulse areas (6.7) in general depend on the pulse shape and differ from the

resonance values (6.6). The propagator within the qunit space is the generalized QHR (6.2),

wherein the phase ϕ depends on the interaction parameters. Although the parameters (i.e.

the rms area and the detuning) of any needed generalized QHR can be found numerically for

essentially any pulse shape, it is very convenient to use a hyperbolic-secant pulse shape, for

which there is a simple exact analytic solution: the Rosen-Zener model [7],

f (t) = sech (t/T ) , (6.9a)

∆ (t) = ∆0. (6.9b)

For this pulse shape, the rms area (6.7) is A = πχT . A generalized QHR transformation

M(v; ϕ) (6.2) is realized when the interactions satisfy again Eq. (6.8), and the pulse area and

the detuning obey [39,54]

A = 2πl (l = 1, 2, . . .) , (6.10a)

ϕ = 2 arg
l−1∏

k=0

[∆0T + i (2k + 1)] . (6.10b)

For any given ϕ, there are l values of ∆0, which satisfy Eq. (6.10b) [39]. This is also the case

for ϕ = π, i.e. for the standard QHR, for which one of the solutions is ∆0 = 0. Hence the

standard QHR M(v) can be realized both on and off resonance, whereas the generalized QHR

M(v; ϕ) can only be realized for nonzero ∆0. The advantage of tuning off resonance is the lower

transient population in the ancilla excited state, which would reduce the population losses if

the lifetime of this state is short compared to the interaction duration.

This implementation is particularly suited for a qutrit (N = 3) formed of the magnetic

sublevels of an atomic level with angular momentum J = 1; then the ancilla state should be a

J = 0 state. The three pulsed fields can be delivered from the same laser by using beam splitters

and polarizers, which would authomatically ensure that all of them have the same detuning and

pulse shape. Moreover, with femtosecond pulses it would be possible to use pulse shapers [47],

which can easily deliver pulses with the desired areas. Of course, the use of femtosecond pulses

offers another advantage: decoherence is irrelevant on such time scales.
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6.1.3 Householder decomposition of a U(N) propagator

The standard QHR M(v) and the generalized QHR M(v; ϕ) can be used for U(N) decomposi-

tion [54]. Any N -dimensional unitary matrix U (U−1 = U†) can be expressed as a product of

N − 1 standard QHRs M (vn) (n = 1, 2, . . . N − 1) and a phase gate,

Φ (φ1, . . . , φN) =
N∑

n=1

eiφn |n〉 〈n| = diag
{
eiφ1 , . . . , eiφN

}
, (6.11)

as

U = M (v1)M (v2) . . .M (vN−1) Φ (φ1, φ2, . . . , φN) , (6.12)

or as a product of N generalized QHRs,

U = M (v1; ϕ1)M (v2; ϕ2) . . .M (vN ; ϕN) . (6.13)

6.2 Transition between pure states

The designed recipe for constructing a general U(N) transformation makes it possible to solve

the important quantum mechanical problem of transfering an N -state quantum system from one

arbitrary preselected initial superposition state to another such state, i.e. the inverse problem

of quantum-state engineering. The cases of pure and mixed states require separate analysis.

6.2.1 Transition by standard QHR

General case

A pure qunit state is described by a state vector |Ψ〉 =
∑N

n=1 cn |n〉, where the vectors |n〉
represent the qunit basis states, and cn is the complex-valued probability amplitude of state

|n〉. Given the preselected initial state |Ψi〉 and the final state |Ψf〉 of the qunit, we wish to

find a propagator U, such that

|Ψf〉 = U |Ψi〉 . (6.14)

We shall show that one of the possible solutions of Eq. (6.14) reads

U = M(vf )DM(vi), (6.15)

where M(vi) and M(vf ) are standard QHRs. Here D is an N -dimensional unitary matrix,

which, when acting upon a single qunit basis state |n〉, only shifts its phase,

D |n〉 = eiφn |n〉 . (6.16)
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For example, D can be an arbitrary N -dimensional phase gate (6.11). Alternatively, D can be

an arbitrary N -dimensional generalized QHR M (v; ϕ) with vector |v〉 orthogonal to the qunit

state |n〉, 〈v |n〉 = 0. Finally D can be the identity D = I.

In order to prove Eq. (6.15) we first define the vector

|vαn〉 =
|Ψα〉 − eiϕαn |n〉√

2 [1− Re (〈Ψα |n〉 eiϕαn)]
, (6.17)

where |n〉 is an arbitrarily chosen basis qunit state, ϕαn = arg[Ψα]n and α = i, f . The QHR

M(vin) acting upon |Ψi〉 reflects it onto the single qunit state |n〉,

M(vin) |Ψi〉 = eiϕin |n〉 . (6.18)

The action of D upon |n〉 only shifts its phase, see Eq. (6.16). The action of M(vfn) upon |n〉
reflects this vector onto the final state,

M(vfn) |n〉 = e−iϕfn |Ψf〉 . (6.19)

Equations (6.18), (6.16) and (6.19) imply that

M(vfn)DM(vin) |Ψi〉 = ei(ϕin−ϕfn+φn) |Ψf〉 , (6.20)

which, up to an unimportant phase, proves Eq. (6.15).

The arbitrariness in the choice of the unitary matrix D, and the intermediate basis state

|n〉, means that the solution (6.15) for U is not unique. However, what is important is that it

always exists. In fact the availability of multiple solutions offers some flexibility for a physical

implementation. In particular we can always choose D = I; then the physical realization of the

propagator U requires only two standard QHRs.

Special cases

In several important special cases only a single standard QHR is needed for pure-to-pure tran-

sition.

1. If the qunit is in a single initial basis state |Ψi〉 = |n〉 then, as follows from Eq. (6.19),

only one standard QHR M(vfn) is sufficient to transfer it into an arbitrary superposition state

|Ψf〉, with |vfn〉 given by Eq. (6.17).

2. Likewise, an arbitrary inital superposition state |Ψi〉 can be linked to any single final

state |Ψf〉 = |n〉 by only one standard QHR M(vin), with |vin〉 given by Eq. (6.17).

3. If |Ψi〉 and |Ψf〉 are orthogonal (〈Ψf |Ψi〉 = 0), then again only a single standard QHR

M(v), with |v〉 = 1√
2
(|Ψf〉 − |Ψi〉), is sufficient to connect them.

4. If |Ψi〉 and |Ψf〉 are superpositional states with real coefficients, then again a single

standard QHR M(v), with |v〉 = (|Ψf〉 − |Ψi〉) /
√

2 (1− 〈Ψf |Ψi〉), is sufficient to link them.
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6.2.2 Transition by generalized QHR

Generalized QHR is ideally suited for a pure-to-pure transition because, as it is easily seen,

only one generalized QHR is sufficient to reflect state |Ψi〉 onto |Ψf〉,

U = M(v; ϕ), (6.21)

where

|v〉 =
|Ψf〉 − |Ψi〉√

2 (1− Re 〈Ψf |Ψi〉)
, (6.22a)

ϕ = 2 arg (1− 〈Ψf |Ψi〉) + π. (6.22b)

In comparison with (6.15) the solution (6.21) is unique; there is no arbitrariness in the choice

of the QHR vector |v〉 (up to an unimportant global phase) and the phase ϕ.

6.2.3 Examples

We consider a qutrit (N = 3), for which the QHR implementation is particularly suitable. As

a first example, the transition from a single state to a superposition state,

|Ψi〉 = |1〉 −→ |1〉+ |2〉+ |3〉√
3

= |Ψf〉 , (6.23)

is performed by a single QHR M(v), with

|v〉 =
1

2

√
1 +

1√
3

[√
3− 1,−1,−1

]T

. (6.24)

Figure 6.2 shows the corresponding time evolutions of the populations and the state mismatch

D. The latter is defined as the distance between the qutrit state vector |Ψ(t)〉 and the target

state |Ψf〉,
D(t) =

∑
mn

∣∣ρmn(t)− ρf
mn

∣∣
∑

mn

∣∣∣ρi
mn − ρf

mn

∣∣∣
, (6.25)

where ρmn are the elements of the qutrit density matrix ρ. This definition of D applies to pure

and mixed states as well. The behavior of D allows us to verify that not only the populations

but also the phases of the probability amplitudes of the target state |Ψf〉 are produced by the

QHR. Indeed, as time progresses, D approaches zero, which implies that |Ψ(t)〉 aligns with

|Ψf〉.
In another example, we transfer a two-state superposition to a three-state superposition,

|1〉+ |3〉√
2

−→ |1〉+ eiπ/3 |2〉+ eiπ/7 |3〉√
3

, (6.26)
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Figure 6.2: Time evolution of the pulsed fields (top) and the populations (bottom) for the

transition (6.23) in a qutrit. We have assumed sech pulses and rms pulse area A = 4π (χT = 4).

The individual couplings χn (n = 1, 2, 3) are given by the components of the QHR vector (6.24),

each multiplied by χ. The detuning is ∆0T = 1.732 (which gives ϕ = π). The thick curve is

the state mismatch (6.25).

by two standard QHRs, U = M(vf )M(vi), with

|vi〉 = [−0.383, 0, 0.924]T , (6.27a)

|vf〉 =
[−0.460, 0.628eiπ/3, 0.628eiπ/7

]T
, (6.27b)

or by one generalized QHR, U = M(v; ϕ), with

|v〉 =
[
0.194e0.213πi, 0.863e−0.454πi, 0.467e−0.083πi

]T
, (6.28)

and ϕ = 0.574π. Figure 6.3 shows the time evolution of the populations and the state mismatch

(6.25) for a standard-QHR implementation, and Fig. 6.4 for generalized QHR. In both cases,

the mismatch D vaniches, indicating the creation of the desired superposition (6.26). The
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Figure 6.3: Time evolution of the pulsed fields (top) and the populations (bottom) for the

transition (6.26) in a qutrit. We have assumed sech pulse shapes and rms pulse area A = 2π

(χT = 2). The individual couplings χn (n = 1, 2, 3) are given by the components of the standard

QHRs (6.27), each multiplied by χ. The detuning is ∆T = 0. The thick curve shows the state

mismatch (6.25).

generalized-QHR implementation is clearly superior because it creates the target state in a

single step.

In conclusion of this section, we have demonstrated that any two pure superposition qunit

states can be connected by just a single generalized QHR, or by two standard QHRs. This

suggests that QHR, and particularly the generalized version, is the most convenient and efficient

tool for pure-to-pure state navigation in Hilbert space. We now turn our attention to the

problem of connecting two arbitrary mixed states.
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Figure 6.4: Time evolution of the pulsed fields (top) and the populations (bottom) for the

transition (6.26) in a qutrit. We have assumed sech pulse shapes and rms pulse area A = 2π

(χT = 2). The individual couplings χn (n = 1, 2, 3) are given by the components of the

generalized QHR (6.28), each multiplied by χ. The detuning is ∆T = 0.791, which produces

the desired phase ϕ = 0.574π. The thick curve shows the state mismatch (6.25).

6.3 Coherent navigation between mixed states

A mixed qunit state can be described by its density matrix ρ, whose spectral decomposition

reads

ρ =
N∑

n=1

rn |ψn〉 〈ψn| . (6.29)

The eigenvalues rn of ρ satisfy
∑N

n=1 rn = 1, and |ψn〉 are the orthonormalized (〈ψk |ψn〉 = δkn)

complex eigenvectors of ρ. The density matrix is hermitian; hence it can be parameterized by

N2 − 1 real parameters.

A hermitian Hamiltonian induces unitary evolution between an initial mixed state ρi and a
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final state ρf ,

ρf = UρiU
†. (6.30)

A unitary evolution does not change the eigenvalues {rn}N
n=1, which are therefore dynamic

invariants, which is easily seen from Eq. (6.30) (as an equivalent set of dynamic invariants

one can take the set {Trρn}N
n=1). Therefore, a unitary propagator U can only connect mixed

states with the same set of invariants {rn}N
n=1. In order to connect mixed states with different

invariants we need an incoherent process; we shall return to this problem in the next section.

Here we shall find the solution to the problem of linking two mixed states with the same

invariants.

Because the eigenvalues {rn}N
n=1 of ρi and ρf are the same, we should have

R†
iρiRi = R†

fρfRf = ρ0, (6.31)

where the unitary matrices Ri and Rf diagonalize respectively ρi and ρf , so that ρ0 =

diag{r1, r2, . . . , rN}. By replacing Eq. (6.31) into Eq. (6.30) we find

ρ0 = Dρ0D
†, (6.32a)

D = R†
fURi. (6.32b)

Because D is a unitary matrix we find ρ0D = Dρ0. Since ρ0 is diagonal, D must be diagonal

too. There are no other restrictions on D; hence D is an arbitrary diagonal matrix. It follows

from Eq. (6.32b) that the solution for the unitary propagator in Eq. (6.30) is given by

U = RfDR†
i . (6.33)

The propagator (6.33) is not unique; it depends on the choice of the diagonal matrix D. In

particular, we can always choose D = I. Hence, the transfer between two mixed states requires

a general U(N) propagator. The latter can be expressed as a product of N − 1 standard QHRs

M(vn) (n = 1, 2, . . . , N−1) and a phase gate Φ (φ1, φ2, . . . , φN), Eq. (6.12), or by N generalized

QHRs M(vn; ϕn) (n = 1, 2, . . . , N), Eq. (6.13) [54].

We take as an example a qutrit, with the arbitrarily chosen initial and final density matrices

ρi =




0.490 0.115e−0.789πi 0.158e0.107πi

0.115e0.789πi 0.336 0.018e−0.675πi

0.158e−0.107πi 0.018e0.675πi 0.175


 , (6.34a)

ρf =




0.298 0.022e0.689πi 0.033e0.319πi

0.022e−0.689πi 0.180 0.177e0.909πi

0.033e−0.319πi 0.177e−0.909πi 0.523


 . (6.34b)
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These density matrices can be connected by the unitary propagator (6.33) with D = I: U =

RfR
†
i . The latter can be expressed as a product of two standard QHRs and one phase gate

U = M(v1)M(v2)Φ, with

|v1〉 =
[
0.612e0.532πi, 0.091e0.211πi, 0.785e0.690πi

]T
, (6.35a)

|v2〉 =
[
0, 0.533e−0.181πi, 0.846e0.859πi

]T
, (6.35b)

Φ = diag{e−0.468πi, e0.819πi, e−0.350πi}, (6.35c)

or by three generalized QHRs, U = M(v1; ϕ1)M(v2; ϕ2)M(v3; ϕ3), with

|v1〉 =
[
0.721e0.659πi, 0.080e−0.209πi, 0.689e0.270πi

]T
, (6.36a)

|v2〉 =
[
0, 0.813e0.469πi, 0.582e−0.261πi

]T
, (6.36b)

|v3〉 = [0, 0, 1]T , (6.36c)

ϕ1 = −0.841π, ϕ2 = 0.969π, ϕ3 = −0.128π. (6.36d)

Figure 6.5 shows the respective time evolution of the populations and the state mismatch

(6.25) for the generalized-QHR realization (6.36). The first QHR M(v3; ϕ3) does not cause pop-

ulation changes because it is in fact a phase gate. As time progresses, the mismatch decreases

and the target density matrix (6.34b) is approached.

6.4 Synthesis of arbitrary preselected mixed states

As it was shown in the previous sections, by applying one or more QHRs one can connect

any two arbitrary pure states, or two arbitrary mixed states with the same dynamic invariants

{rn}N
n=1. Mixed states with different invariants cannot be connected by coherent hermitian

evolution because these invariants are constants of motion. Hence in order to connect mixed

states with different invariants we need a mechanism with non-hermitian dynamics, which can

alter the dynamic invariants.

In this section we shall describe two techniques for engineering an arbitrary mixed state,

starting from a single pure state. This is the most interesting special case of the general problem

of connecting two arbitrary mixed states, because the initial state can be prepared routinely

by optical pumping. Moreover, the general mixed-to-mixed problem can be reduced to the

single-to-mixed problem by optically pumping the initial mixed state into a single state.

The two techniques use a combination of coherent and incoherent evolutions. The coherent

evolution uses QHRs, whereas the incoherent non-hermitian evolution is induced either by pure

dephasing or spontaneous emission. We shall consider the two techniques separately.
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Figure 6.5: Time evolution of the pulsed fields (top), the populations and the state mismatch

(bottom) for the transition between states (6.34a) and (6.34b) in a qutrit. We have assumed sech

pulse shapes and rms pulse area A = 2π (χT = 2). The individual couplings χn (n = 1, 2, 3) are

given by the components of the generalized QHR (6.36), each multiplied by χ. The detunings

are ∆1T = −0.255, ∆2T = 0.049, and ∆3T = −4.918, which produce the QHR phases (6.36d).

6.4.1 Using dephasing

We assume that the qunit is initially in the single qunit state ρi = |i〉 〈i|, and we wish to

transform the system to an arbitrary mixed state ρf . Let us denote the eigenvalues of ρf by rn

(n = 1, 2, . . . , N). We proceed as follows.

• First, using the prescription from Sec. 6.2, we apply a single QHR to transfer state |i〉 to

a pure superposition state, in which the populations are equal to the eigenvalues of ρf :

ρnn = rn (n = 1, 2, . . . , N). The phases of this superposition are irrelevant.

• In the second step we switch the dephasing on and let all coherences decay to zero. This

can be done, for example, by using phase-fluctuating far-off-resonance laser fields. In the
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end of this process, the density matrix will be diagonal, with the eigenvalues rn of ρf on

the diagonal, which implies that it will have the same dynamic invariants as ρf .

• The third step is to connect this intermediate state to the desired state ρf by a sequence

of QHRs, as explained in the previous Sec. 6.3.

In summary, we need three steps: a single QHR, a dephasing process, and a sequence of N

QHRs. Figure 6.6 shows the evolution of the populations and the state mismatch (6.25) during

the engineering of the mixed state (6.34b) by the dephasing technique. The first step is the

single QHR M(v), with QHR vector

|v〉 = [−0.336, 0.816, 0.471]T , (6.37)

which transfers the single initial state |1〉 to the pure superposition state

ρ1 =




0.6
√

0.18
√

0.06
√

0.18 0.3
√

0.03
√

0.06
√

0.03 0.1


 . (6.38)

The second step is the pure dephasing process, which nullifies all coherences and leaves the

density matrix in a diagonal form,

ρ2 = diag {0.6, 0.3, 0.1} . (6.39)

The third step is a sequence of two generalized QHRs, which transfer ρ2 into the desired final

density matrix ρf , Eq. (6.34b). The QHR components read

|v1〉 =
[
0.689e0.454πi, 0.280e0.436πi, 0.668e−0.477πi

]T
, (6.40a)

|v2〉 =
[
0, 0.793e0.740πi, 0.609e0.025πi

]T
, (6.40b)

ϕ1 = 0.950π, ϕ2 = −0.760π. (6.40c)

6.4.2 Using spontaneous emission

In the method, which uses spontaneous emission, we start again in a single qunit state ρi =

|i〉 〈i|, and the target is the arbitrary mixed state ρf . The procedure now consists of only

two steps: incoherent and coherent. It is particularly well suited for a qutrit, which we shall

describe, although it is readily extended to more states. This method requires a closed qunit-

ancilla transition; if the ancilla state can decay to other levels then the fidelity will be reduced

accordingly.
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Figure 6.6: Time evolution of the pulsed fields (top), the populations and the state mismatch

(6.25) (bottom) for mixed state engineering in a qutrit. The qutrit starts in state |1〉 and the

target final state is given by Eq. (6.34b). We have assumed sech pulse shapes and rms pulse

area A = 2π (χT = 2). The individual couplings χn (n = 1, 2, 3) are given by the components

of the generalized QHR (6.40), each multiplied by χ. The detunings are ∆1T = 0.072 and

∆2T = −0.396, which produce the desired QHR phases (6.40c). The dephasing rate is Γ = 2/T .

It is possible here to apply directly the incoherent step, which produces a density matrix

with the desired final dynamic invariants, without the need to prepare first a coherent qunit

superposition, as in the dephasing method above. The idea is to use laser-induced spontaneous

emission from the ancilla excited state to prepare a completely incoherent superposition of the

qunit states with populations ρnn equal to the eigenvalues rn of ρf ,

ρ =
3∑

n=1

rn |n〉 〈n| . (6.41)

For this we apply a sequence of appropriately chosen laser pulses from the qunit states to the

excited state, which decays back to the qunit states and redistributes the population among

them.
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There are various scenarios possible, which can produce the desired incoherent qunit super-

position. Here we describe a scenario which looks particularly simple and easy to implement for

the qutrit formed of the magnetic sublevels M = −1, 0, 1 of a J = 1 level and an ancilla excited

level with J = 0 (this implies also equal spontaneous decay branch ratios from the J = 0 level

to the M sublevels of the qutrit). For definiteness, and without loss of generality, we assume

that the eigenvalues of ρf are ordered as r1 = r2 = r3. We need three pulses: a short pulse

from state |1〉, a long pulse from state |3〉 and again a short pulse from state |1〉 (here short

and long are related to the lifetime of the excited state).

The short pulse from the initially populated state |1〉, with excitation probability p1, trans-

fers population p1 to the excited state, 1/3 of which decays back to each of the qutrit states.

The ensuing density matrix reads

ρ1 = diag

{
1− 2

3
p1,

1

3
p1,

1

3
p1

}
. (6.42)

We then apply a sufficiently long pulse from state |3〉, so that its population is completely

depleted and distributed among states |1〉 and |2〉. The resulting density matrix is

ρ2 = diag

{
1− 1

2
p1,

1

2
p1, 0

}
. (6.43)

We now apply again a short pulse from state |1〉, with a different probability p2, and then wait

for spontaneous emission from the excited state. The result is

ρ3 = diag

{(
1− 1

2
p1

)(
1− 2

3
p2

)
,

1

2
p1 +

1

3
p2

(
1− 1

2
p1

)
,
1

3
p2

(
1− 1

2
p1

)}
. (6.44)

It is easy to show that in order to create the mixed state (6.41) we should have the probabilities

p1 = 2 (r2 − r3) , (6.45a)

p2 =
3r3

r1 + 2r3

. (6.45b)

Because we assumed that r1 = r2 = r3 the probabilities p1 and p2 belong to the interval [0, 1]

and are therefore well defined. Such probabilities can be produced by resonant pulses with

appropriate pulse areas An. These pulses should be short compared to the lifetime of the

excited state in order to avoid spontaneous emission during their action.

Once we have prepared the mixed qutrit state (6.41), which has the same invariants as ρf ,

we can apply QHRs to transfer this state into the desired final state ρf , as described in Sec.

6.3.
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6.5 Conclusions

In this chapter we have proposed a technique, which allows to connect any two quantum

superposition states, pure or mixed, of an N -state atom. This solution of the inverse problem

in quantum mechanics contains two stages: (i) mathematical derivation of the propagator

that links the desired initial and final density matrices, and (ii) physical realization of this

propagator. In the most general case of arbitrary mixed states, the implementations combine

coherent hermitian and incoherent non-hermitian interactions induced by pulsed laser fields. In

general, the propagator is not unique, which reflects the multitude of paths between two qunit

states; this also allows for some flexibility in the choice of most convenient path.

The physical realization uses an N -pod configuration of N lower states, forming the qunit,

and an ancillary upper state. It is particularly convenient for a qutrit, where the N = 3 states

are the magnetic sublevels of a J = 1 level and the ancilla state is a J = 0 level. Then only a

single tunable laser is needed to provide the necessary polarized laser pulses.

The hermitian part uses a sequence of sets of short coherent laser pulses with appropriate

pulse areas and detunings. For each set, the propagator of the N -pod represents a quantum

Householder reflection (QHR). A sequence of at most N suitably chosen QHRs can synthesize

any desired unitary propagator.

We have shown that two arbitrary preselected pure superposition states can be connected

by a single QHR only, because the respective propagator has exactly the QHR symmetry. Two

mixed states, with the same set of dynamic invariants, require a general U(N) transformation,

which can be realized by at most N QHRs. This is a significant improvement over the existing

setups involving O(N2) operations, which can be crucial in making quantum state engineering

and operations with qunits experimentally feasible.

The most general case of two arbitrary mixed states with different dynamic invariants

requires an incoherent step, which equalizes the invariants of the initial density matrix to

those of the final density matrix. We have demonstrated how this can be done by using pure

dephasing or spontaneous decay of the ancillary upper state. Once the invariants are equalized,

the problem is reduced to the one of connecting two mixed states with the same invariants,

which, as explained above, can be done by at most N QHRs. This method has been described

for a qutrit, but it is easily generalized to an arbitrary qunit.

The present results can have important applications in the storage of quantum information.

For example, a qubit can encode two continuous parameters: the population ratio of the two

qubit states and the relative phase of their amplitudes. A qunit in a pure state can encode

2(N − 1) parameters (N − 1 populations and N − 1 relative phases), i.e. by using qunits
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information can be encoded in significantly fewer particles than with qubits. Moreover, a mixed

qunit state can encode as many as N2−1 real parameters. This may be particularly interesting

if the number of particles that can be used is restricted, e.g., due to decoherence [3, 4].



Chapter 7

Design of quantum Fourier transforms

and quantum algorithms by using

circulant Hamiltonians

Quantum information processing is built upon sequences of special unitary transformations.

One of the most important of these is the quantum (discrete) Fourier transform (QFT), which

is a key ingredient of many quantum algorithms [3, 58, 59], including Shor’s factorization [60],

the algorithms of Deutsch [61] and Simon [62], order finding, discrete logarithms, quantum

phase estimation, etc. [3].

Traditionally, QFT on r qubits is implemented by a quantum circuit consisting of O(r)

Hadamard gates and O(r2) controlled-phase gates [63]. Experimental demonstrations include

synthesis of 3-qubit QFT in nuclear magnetic resonance (NMR) systems [64], order finding

with NMR [65], phase estimation with NMR [66], Shor’s factorization in NMR [67], in ion

traps [68], and using a “compiled version” of Shor’s algorithm with photonic qubits [69, 70].

Further theoretical proposals for implementations of QFT include atoms in cavity QED [71],

entangled multilevel atoms [72], trapped ions with Householder reflections [73], linear optics [74]

with Cooley-Tukey’s algorithm [75], waveguide arrays [76], etc.

The largest numbers factorized experimentally by Shor’s algorithm hitherto are 15 [67, 68]

and 21 [77]. The primary obstacle for demonstration of Shor’s factorization for larger numbers

is the large number of one- and two-qubit gates required. A “general-purpose” Shor’s algorithm

for an L-bit number demands L3 gates and 5L+1 qubits [78]; an implementation using a linear

ion trap would require about 396L3 laser pulses [78]. “Special-purpose” algorithms that exploit

special properties of the input number are much faster: the number 15 can be factored with 6

qubits and 38 pulses only [78].

88
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Another practical difficulty of the QFT algorithm is the use of two-qubit control-phase gates,

which, for large number of qubits, involve very small phases. To this end, an “approximate”

QFT has been proposed [63, 79, 80], in which the phase shift gates requiring highest precision

are omitted.

Griffiths and Niu proposed a “semiclassical” QFT, wherein the costly two-qubit gates are

replaced by serial single-qubit rotations supplemented with classical measurements [81]. Such

a semiclassical QFT has been demonstrated recently with three trapped ions [68].

In the present chapter, we propose to construct QFT by a novel approach which uses

a special class of Hamiltonians, having a circulant symmetry. Such Hamiltonians have the

advantage that their eigenvectors are the columns of the QFT (hence the latter diagonalizes

the Hamiltonian), and they do not depend on the particular elements of the Hamiltonian, as

far as the circulant symmetry is conserved. This important feature allows one to construct

QFT in a single interaction step; it also makes this techniques robust against variations in the

interaction parameters. The present work uses a similar approach as Unanyan et al. [82], who

proposed to use circulant Hamiltonians in order to create coherent superpositions of states.

7.1 Background

Quantum Fourier transform. The N -dimensional QFT is defined with its action on an

orthonormal basis |0〉, |1〉, . . . , |N − 1〉:

FN |n〉 =
1√
N

N−1∑

k=0

e2πink/N |k〉. (7.1)

It transforms a single state into an equal superposition of states with specific phase factors.

The inverse QFT is

(FN)−1|n〉 =
1√
N

N−1∑

k=0

e−2πink/N |k〉. (7.2)

In a matrix form QFT is a square matrix with elements

FN
kn =

1√
N

e2πikn/N . (7.3)

Circulant matrix. An N ×N matrix C of the form

C =




c0 cN−1 cN−2 · · · c1

c1 c0 cN−1 · · · c2

c2 c1 c0 · · · c3

...
...

...
. . .

...

cN−1 cN−2 cN−3 · · · c0




(7.4)
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is called a circulant matrix. It is a special case of a Toeplitz matrix [83] and it is completely

defined by its first vector-column (or row). The other columns (rows) are just cyclic permuta-

tions of it. The circulant matrices have some very interesting properties. The most important

one in the present context is that the eigenvectors of a circulant matrix of a given size are

the vector-columns of the discrete Fourier transform (7.3) of the same size; hence they do not

depend on the elements of the circulant matrix. The eigenvalues λn of the circulant matrix,

though, are phased sums of the matrix elements:

λn =
N−1∑

k=0

ck exp (−i2πkn/N) . (7.5)

7.2 Design of the Hamiltonian

In order to synthesize QFT, we use a special time-dependent Hamiltonian of the form [82]

H(t) = f(t)H0 + g(t)H1, (7.6)

where f(t) and g(t) are (generally pulse-shaped) real-valued functions, such that f(t) precedes

g(t) in time, i.e.

0
−∞←t←− g(t)

f(t)

t→∞−→ ∞. (7.7)

For instance, we can take

f(t) = [1− tanh(t/T )]/2, (7.8a)

g(t) = [1 + tanh(t/T )]/2. (7.8b)

Therefore, the Hamiltonian (7.6) has the asymptotics

H0
−∞←t←− H(t)

t→∞−→ H1. (7.9)

We demand H0 to be a diagonal matrix in which the energies of all states (the diagonal

elements) are non-degenerate

H0 = diag(E1, E2, . . . , EN). (7.10)

For H1 we choose a circulant matrix, with the condition that the eigenvalues should be well

separated from each other. Because the Hamiltonian has to be Hermitian, H1 is not a most

general circulant matrix, but a Hermitian circulant matrix.

Because the Hamiltonian (7.6) at t → ∞ has a circulant symmetry, its eigenvectors are

the vector-columns of QFT. However, each eigenvector |n〉 may have an adiabatic phase factor

eiαn , acquired in the end of the evolution, which may be different for each |n〉. This means that
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for such a Hamiltonian (7.6), adiabatic evolution will perform the QFT (7.1) (possibly after

renumbering of the basis states), but with some additional phases αn,

FN |n〉 =
1√
N

eiαn

N−1∑

k=0

e2πink/N |k〉. (7.11)

The phases αn are just integrals over the quasienergies, as follows from the adiabatic theorem

[84]. The inverse Fourier transform would be

(FN)−1|n〉 =
1√
N

N−1∑

k=0

e−iαke−2πink/N |k〉, (7.12)

and it can be accomplished by adiabatic evolution with the Hamiltonian

H(t) = g(t)H0 + f(t)H1. (7.13)

For example, for N = 4 we can have

H0 = diag(−E,−E/3, E/3, E) (7.14a)

H1 =




0 V 0 V ∗

V ∗ 0 V 0

0 V ∗ 0 V

V 0 V ∗ 0




. (7.14b)

For laser-driven atomic and molecular transitions, the interaction V is given by the Rabi fre-

quency Ω: V = 1
2
~Ω. Insofar as the eigenvalues of the circulant matrix are given by Eq. (7.5),

one has to choose the interaction energy V in such a way that the eigenenergies have well

separated values. Another requirement for adiabatic evolution is that the functions f(t) and

g(t) change sufficiently slowly, so that the nonadiabatic coupling 〈χ̇m(t) | χn(t)〉 between each

pair of adiabatic states |χm(t)〉 and |χn(t)〉 remains negligibly small compared to the separation

of the eigenenergies εm(t) and εn(t),

|εm(t)− εn(t)| À |〈χ̇m(t) | χn(t)〉| ∼ 1

T
, (7.15)

where T is the interaction duration.

In the numeric examples we use a hyperbolic-secant mask for the functions f(t) and g(t):

f(t) = sech (t/τ)[1− tanh(t/T )], (7.16a)

g(t) = sech (t/τ)[1 + tanh(t/T )]. (7.16b)

These factors are chosen for implementation feasibility; they do not change the (all-important)

asymptotic behaviour of the eigenstates |χn(t)〉. Figure 7.1 shows the evolution of the eigen-

values of the Hamiltonian (7.6) for V = E(1 + i/3). For this choice of V the eigenenergies are

non-degenerate (except at infinite times, which is irrelevant because there is no interaction)

and the adiabatic evolution is enabled.



7.3. Quantum phase estimation 92

-3

-2

-1

0

1

2

3

-4 -2 0 2 4
Time (in units T)

E
ig

en
en

er
gi

es
 (

in
 u

ni
ts

 E
)

Figure 7.1: Eigenvalues of the Hamiltonian (7.6) as a function of time for H0 and H1 given by

Eqs. (7.14a) and (7.14b), with V = E(1+ i/3), whereas g(t) and f(t) are given by Eqs. (7.16a)

and (7.16b).

7.3 Quantum phase estimation

We shall show now that the QFT propagator (7.11), which results from the Hamiltonian (7.6),

can be used to realize quantum algorithms, despite the presence of the adiabatic phase factors

eiαn . We consider the quantum phase estimation algorithm [3], which is the key for many

other algorithms, such as Shor’s factorization. We briefly summarize here the essence of this

algorithm.

Let us consider a unitary operator U, which has an eigenvector |u〉 and a corresponding

eigenvalue exp(2πiφ), where φ ∈ [0, 1). We assume that we are able to prepare state |u〉 and

to perform the controlled-U2j
operation, for non-negative integer j. The goal of the algorithm

is to estimate φ. To this end, the algorithm uses two registers. The first register contains r

qubits initially in state |0〉 and the second one starts in state |u〉, containing as many qubits as

needed to store |u〉.
The procedure starts with the application of a Hadamard transform [3] to the first register,

followed by the application of controlled-U operations on the second register, with U raised to

successive powers of two. The final state of the first register is

2−r/2(|0〉+ e2πi2r−1φ|1〉)1(|0〉+ e2πi2r−2φ|1〉)2 · · · (|0〉+ e2πi20φ|1〉)r = 2−r/2

2r−1∑

k=0

e2πikφ|k〉, (7.17)

and the second register stays in state |u〉. Now let us suppose that φ can be expressed using a
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Figure 7.2: Upper frame: Field functions f(t) and g(t), Eqs. (7.16a) and (7.16b). Lower

frame: Fidelity of phase estimation during the inverse Fourier transform. The parameters are:

φ = 0.75, τ = T , V = E(1 + i/3), E = 10/T .

r-bit expansion

φ = 0.φ1φ2 . . . φr =
φ1

2
+

φ2

4
+ · · ·+ φr

2r
, (7.18)

where 0.φ1φ2 . . . φr represents a binary fraction. Then state (7.17) can be written as

2−r/2(|0〉+ e2πi0.φr |1〉)1(|0〉+ e2πi0.φr−1φr |1〉)2 · · · (|0〉+ e2πi0.φ1φ2···φr |1〉)r. (7.19)

Finally, we apply the inverse QFT in order to obtain the product state |φ1 · · ·φr〉. In our case

we apply the phased inverse QFT (7.11) and find

e−iα(φ)|φ1 · · ·φr〉, (7.20)

where α(φ) is an adiabatic phase that depends on φ. Since this global phase α has no physical

meaning, a measurement in the computational basis would give us exactly φ. We note that

if φ cannot be written as a r bit expansion (7.18), this procedure can still produce a good

approximation to φ with high probability [3].

In Fig. 7.2 we plot the probability of state (7.20) during the inverse Fourier transformation

(7.12). This probability is evaluated by solving numerically the Schrödinger equation for the

Hamiltonian (7.13) and is used as a measure of the fidelity. The figure shows that when the

phase φ has an exact expansion as a binary fraction, the final probability tends to unity.



7.4. Implementations 94

1
2J ' =

1
2J '' =

1J '' =

1J ' =

1J '' =

0J ''' =

0J ' =1
2m' = − 1

2m' =

� ��+

�−

1
�+

1
�−

2
�−

2
�+

1
�+

2
�+

2
�−

1
�−

�� 0m' =

0m' = 1m' =1m' = −

(a) (b)

(c)

1
2m'' = − 1

2m'' = 0m''' =

1m'' = − 0m'' = 1m'' =

1m'' = − 1m'' =

 

Figure 7.3: Systems, which can be used in order to realize a circulant Hamiltonian: (a) J ′ =

1
2
↔ J ′′ = 1

2
system, (b) J ′ = 0 ↔ J ′′ = 1 ↔ J ′′′ = 0 system, and (c) J ′ = 1 ↔ J ′′ = 1 system,

where the m′ = 0 ↔ m′′ = 0 transition is dipole forbidden.

7.4 Implementations

In this section we discuss a few simple systems, which can be used for implementing the Hamil-

tonian (7.6).

J ′ = 1
2
↔ J ′′ = 1

2
system. As a first example we consider the system formed of the magnetic

sublevels in a J ′ = 1
2
↔ J ′′ = 1

2
transition shown in Fig. 7.3(a), where J is the total angular

momentum of each level. We apply two linearly polarized fields (the two polarization directions

being perpendicular), the second one seen as a superposition of two circularly polarized fields

(σ+ and σ−). By ordering the magnetic sublevels in the sequence |m′ = −1
2
〉, |m′′ = 1

2
〉,

|m′ = 1
2
〉, |m′′ = −1

2
〉, and by suitably tuning the strengths and the relative phase of the two

independent fields, we can adjust the interaction elements of the Hamiltonian and produce

the desired circulant form (7.14b). We note that because of the different signs of some of the

Clebsch-Gordan coefficients, one should redefine one of the probability amplitudes by changing

its sign.

As we want to implement the full Hamiltonian (7.6), we also need to realize its first part H0.

It is especially important to remove the degeneracies between the magnetic sublevels. This can

be accomplished by using a static magnetic field, which induces m-dependent Zeeman shifts,

and a far-off resonant laser pulse, which will cause Stark shifts. Let the energy splitting due
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to Zeeman shift be EZ (the same for both ground and excited levels). The Stark shifts are

generally different for the two levels: Eg,S and Ee,S, where ‘g’ and ‘e’ stand, respectively, for

ground and excited. Hence, in order to realize the Hamiltonian (7.14a), we need to solve the

following algebraic system

−1
2
EZ + Eg,S = −E, (7.21a)

1
2
EZ + Eg,S = −E/3, (7.21b)

−1
2
EZ + Ee,S = E/3, (7.21c)

1
2
EZ + Ee,S = E, (7.21d)

which gives EZ = Ee,S = −Eg,S = 2
3
E. Moreover, because the energies of H0 need not be

exactly evenly separated, our method is robust against fluctuations in the field parameters.

Making a reference to Eq. (7.6) and Fig. 7.2, we conclude that the Stark and Zeeman fields,

with the time dependence f(t), have to be applied before the polarized laser fields, with time

dependence g(t).

J ′ = 0 ↔ J ′′ = 1 ↔ J ′′′ = 0 system. Another system with N = 4 is the diamond system

depicted in Fig. 7.3(b). Here again two linearly polarized laser fields are needed, but now they

have parallel polarization directions. One advantage of this system is that only magnetic fields

are sufficient to realize the first part of the Hamiltonian. The disadvantage is that the two

independent fields generally come from two different lasers, because of the different frequencies

of the transitions.

J ′ = 1 ↔ J ′′ = 1 system. The J ′ = 1 ↔ J ′′ = 1 system, depicted in Fig. 7.3(c), contains six

coupled m sublevels. In this system the circulant symmetry occurs because m′ = 0 ↔ m′′ = 0

is a dipole forbidden transition. By ordering the magnetic sublevels in the sequence |m′ = −1〉,
|m′′ = 0〉, |m′ = 1〉, |m′′ = 1〉, |m′ = 0〉, |m′′ = −1〉 we obtain a Hamiltonian of the type

H1 =
~
2




0 −Ω1 0 0 0 −Ω2

−Ω∗
1 0 Ω∗

1 0 0 0

0 Ω1 0 Ω2 0 0

0 0 Ω∗
2 0 −Ω∗

1 0

0 0 0 −Ω1 0 Ω1

−Ω∗
2 0 0 0 Ω∗

1 0




, (7.22)

where Ω1 and Ω2 are the Rabi frequencies between, respectively, states with different m and

states with the same m. Each Clebsch-Gordan coefficient is incorporated in the respective Rabi
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frequency. The Rabi frequencies are complex (needed to avoid eigenvalue degeneracies), with

a phase difference between the left and right circularly polarized components. After a phase

transformation of the amplitudes, cn → eiβncn, with suitably chosen phase factors βn, we can

make the Hamiltonian take the form of a circulant matrix. The selection of the phases βn

amounts to solving a simple linear algebraic system.

The first part of the Hamiltonian H0 can be realized with auxiliary magnetic and electric

fields, as for the J ′ = 1
2
↔ J ′′ = 1

2
system.

7.5 Conclusions

The intrinsic symmetry of circulant matrices allows one to design Hamiltonians that can produce

a discrete Fourier transform on a set of quantum states in a natural manner and in a single

step, without the need to apply a large number of consecutive quantum gates. The designed

Hamiltonian has different asymptotics: it is a nondegenerate diagonal matrix in the beginning

and a circulant matrix in the end (or vice versa); the time dependence that connects the

two should be sufficiently slow in order to enable adiabatic evolution. The resulting unitary

transformation, which this Hamiltonian produces, differs from the standard QFT by additional

(adiabatic) phase factors in the matrix columns; we show, however, that one can still construct

the quantum phase estimation algorithm, which is an essential subroutine in many quantum

algorithms. We have presented examples of simple atomic systems, the Hamiltonians of which

can be tailored to obtain circulant symmetry. The construction of large-scale systems with

circulant symmetry requires the design of a closed-loop linkage pattern; for instance, a chain of

nearest-neighbor interactions supplemented with a (direct or effective) interaction between the

two ends of the chain.



Chapter 8

Contributions: summary

The present thesis studied different aspects of the light-matter interaction and considered spe-

cific applications. Below, the contribution of the author are presented.

Chapter 2 analyzes the properties of the detection signal in a two-state system, depending

on the fashion in which it is collected. It is shown that the post-pulse populations of the ground

and excited states, and the ionization signal collected during the excitation, possess different

symmetry properties with respect to the frequency chirp rate and the static frequency detuning.

In Chapter 3 the accuracy of the adiabatic-elimination approximation is analyzed for cal-

culating the acquired phases, caused by far-off-resonant pulsed laser fields. In this chapter

the conditions for the applicability of this approximation are derived and it is shown that the

adiabatic approximation is a far more accurate method for evaluating the phase shifts.

In Chapter 4 an analytically exactly soluble two-state model is presented, in which a

hyperbolic-secant-shaped pulsed interaction has a phase jump of φ at the time of its max-

imum. The jump phase φ can be used as a control parameter for the two-state transition

probability.

In Chapter 5 is presented a class of exact analytic solutions of the time-dependent Schrödinger

equation for a two-state quantum system coherently driven by a nonresonant external field. The

coupling is a linear function of time with a finite duration and the detuning is constant.

Chapter 6 introduces a technique which allows one to connect any two arbitrary (pure or

mixed) superposition states of an N -state quantum system. The proposed solution to this

inverse quantum mechanical problem is analytical, exact and very compact. The technique

uses standard and generalized quantum Householder reflections (QHR), which require external

pulses of precise areas and frequencies.

In Chapter 7 is proposed a technique for design of quantum Fourier transforms, and ensu-

ing quantum algorithms, in a single interaction step by engineered Hamiltonians of circulant
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Appendix A

Basic and Auxiliary Results

A.1 Relevant properties of the Gauss hypergeometric

function and the Euler Γ-function

The Gauss hypergeometric function F (λ, µ; ν; z) satisfies the Gauss hypergeometric equation

[40],

z(1− z)w′′ + [ν − (λ + µ + 1)z] w′ − λµw = 0. (A.1.1)

The Gauss function has the following properties [40]

d

dz
F (λ, µ; ν; z) =

λµ

ν
F (λ + 1, µ + 1; ν + 1; z), (A.1.2a)

d

dz

[
zν−1F (λ, µ; ν; z)

]
= (ν − 1)zν−2F (λ, µ; ν − n; z), (A.1.2b)

F (λ, µ; ν; z) = (1− z)ν−λ−µ F (ν − λ, ν − µ; ν; z), (A.1.2c)

F (λ, µ; ν; 0) = 1, (A.1.2d)

F (λ, µ; ν; 1) =
Γ(ν)Γ(ν − λ− µ)

Γ(ν − λ)Γ(ν − µ)
, (A.1.2e)

F (λ, µ;
λ + µ + 1

2
;

1

2
) =

√
πΓ(λ+µ+1

2
)

Γ(λ+1
2

)Γ(µ+1
2

)
(A.1.2f)

F (λ,−λ; ν;
1

2
) = π1/22−νΓ(ν)

[
1

Γ
(

λ+ν
2

)
Γ

(
ν−λ+1

2

) +
1

Γ
(

λ+ν+1
2

)
Γ

(
ν−λ

2

)
]

, (A.1.2g)

F (1 + λ, 1− λ; 1 + ν;
1

2
) =

ν

λ
π1/221−νΓ(ν)

[
1

Γ
(

λ+ν
2

)
Γ

(
ν−λ+1

2

) − 1

Γ
(

λ+ν+1
2

)
Γ

(
ν−λ

2

)
]

.

(A.1.2h)

The Γ-function obeys the reflection formula [40]

Γ(z)Γ(1− z) =
π

sin πz
, (A.1.3)
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and has the asymptotics expansions [40]

ln Γ(z) ∼ 1

2
ln 2π +

(
z − 1

2

)
ln z − z +

1

12z
+ O(|z|−3), (A.1.4a)

Γ(z + a)

Γ(z + b)
∼ za−b

[
1 +

(a + b− 1) (a− b)

2z
+ O(|z|−2)

]
. (A.1.4b)

A.2 Relevant properties of the parabolic cylinder func-

tion

The parabolic cylinder (Weber) function Dν(z) [40] is a solution of the Weber equation

d2

dz2
Dν(z) +

(
ν + 1

2
− 1

4
z2

)
Dν(z) = 0. (A.2.5)

The power series expansion is relevant for small |z| and has the form [85]

Dν(z) = 2ν/2π1/2ez2/4

∞∑
n=0

(−z
√

2
)n

n!Γ
[

1
2
(1− n− ν)

] . (A.2.6)

The large-argument asymptotic expansions are relevant when |z| À 1, |ν|. The basic one is [40]

Dν(z) ∼ zνe−
1
4

z2

[
N∑

n=0

(−1
2
ν)n(1

2
− 1

2
ν)n

n!(−1
2
z2)n

+O
(∣∣z2

∣∣−N−1
)]

, (A.2.7)

(|z| → ∞, | arg z| < 3π/4, ν fixed)

where (a)n = Γ(a + n)/Γ(a). The asymptotics for other values of arg z is found by using the

connection formula [40]

Dν(z) = eiπνDν(−z) +

√
2π

Γ(−ν)
ei(ν+1)π/2D−1−ν(−iz). (A.2.8)

The existence of different asymptotic expansions for different values of arg z is a manifestation

of the Stokes phenomenon [86,87].

The large-argument-and-large-order asymptotic expansions are relevant when both |z| and

|ν| are simultaneously much larger than unity [50]. These expansions are generally more compli-

cated than the weak-coupling asymptotics (A.2.7). For the particular functions involved in the

present models the asymptotic expansions can be derived from the general results of Olver [50];
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their leading terms are [49]

Diδ2(αe−iπ/4) ∼ cos θ eπδ2/4+iη, (A.2.9a)

D−iδ2(αeiπ/4) ∼ cos θ eπδ2/4−iη, (A.2.9b)

D−1−iδ2(αeiπ/4) ∼ sin θ

δ
eπδ2/4−iη−iπ/4, (A.2.9c)

D−1+iδ2(αe−iπ/4) ∼ sin θ

δ
eπδ2/4+iη+iπ/4, (A.2.9d)

Diδ2(αe3iπ/4) ∼ cos θ e−3πδ2/4+iη +
δ
√

2π sin θ

Γ (1− iδ2)
e−πδ2/4−iη−iπ/4, (A.2.9e)

D−1+iδ2(αe3iπ/4) ∼ sin θ

δ
e−3πδ2/4+iη−3iπ/4 +

√
2π cos θ

Γ (1− iδ2)
e−πδ2/4−iη, (A.2.9f)

where α and δ are assumed positive and large (α → ∞, δ → ∞, α/δ is arbitrary), θ =

1
2
arctan(2δ/α), and

η = 1
2
α
√

α2 + 4δ2 − 1
2
δ2 + δ2 ln

[
1
2

(
α +

√
α2 + 4δ2

)]
, (A.2.10)

The first four expansions, for phases of the arguments equal to π/4, are derived [49] directly

from Olver’s results [50]. The last two asymptotics, for phases of the argument equal to 3π/4,

are obtained from Eqs. (A.2.9a)-(A.2.9d) by using the connection formula (A.2.8).

A.3 Invariances of the survival probabilities

We show here, that the survival probabilities P1→1 and P2→2 in a lossy two-state system do

not depend on the sign change of the odd part ∆o(t) and the even part ∆e(t) of the detuning,

provided the Rabi frequency Ω(t) and the loss rate Γ(t) are even functions of time. We write

the Hamiltonian in the interaction representation,

H(t) =
~
2


 0 Ω(t)e−iD(t)

Ω(t)eiD(t) 0


 , (A.3.11)

with D(t) =
∫ t

0

[
∆(t′)− 1

2
iΓ(t′)

]
dt′. The formal solution for the evolution operator is expressed

using the Dyson series

U(∞,−∞) = 1 +
∞∑

n=1

Un(∞,−∞), (A.3.12)

where

Un(∞,−∞) =

(−i

~

)n ∫ ∞

−∞
δt1

∫ t1

−∞
δt2 · · ·

∫ tn−1

−∞
δtn

×H(t1)H(t2) · · ·H(tn) (A.3.13)



A.4. Solution of the Carroll-Hioe model for complex parameters 102

and t1 > t2 > · · · > tn. It is straightforward to show that the even powers of the Hamiltonian

in the sum in Eq. (A.3.12) generate diagonal matrices, while the odd powers are anti-diagonal

matrices. We consider the diagonal elements first. Let us examine the simplest diagonal term

in the Dyson series, which for n = 2 reads

U2(∞,−∞) = −1
4

∫ ∞

−∞
dt1

∫ t1

−∞
dt2


 Ω1Ω2e

−i(D1−D2) 0

0 Ω1Ω2e
i(D1−D2)


 . (A.3.14)

The subscripts in Ωk and Dk indicate the instant of time tk. The higher powers of the Hamil-

tonian in the Dyson series have a similar simple form.

By using simple transformations of variables, it can be shown that U2(∞,−∞) is invariant

under the transformation ∆o ↔ −∆o, while the change ∆e ↔ −∆e leads only to complex

conjugation. These results are also valid for the higher even-order terms of the Dyson series,

which means that the considered transformations do not change the absolute values of the

diagonal elements of the evolution matrix. This, in turn, proves the invariance of the survival

probabilities.

These arguments obviously do not hold for the odd terms in the sum, which means that in

the presence of losses Γ > 0 the transition probabilities P1→2 and P2→1 are not invariant with

respect to the sign flips ∆o ↔ −∆o and ∆e ↔ −∆e.

A.4 Solution of the Carroll-Hioe model for complex pa-

rameters

In order to solve the Carroll-Hioe model (1.19), we begin with a phase transformation of the

probability amplitudes,

c1(t) → c1(t), c2(t) → c2(t) exp

[
−i

∫ t

0

∆(τ)dτ

]
, (A.4.15)

which brings the Schrödinger equation into the interaction representation

i
d

dt
c1(t) = 1

2
Ω(t)e−iD(t)c2(t), (A.4.16a)

i
d

dt
c2(t) = 1

2
Ω(t)eiD(t)c1(t), (A.4.16b)

where D =
∫ t

0
∆(τ)dτ , i.e.,

D = (S0 − iΓ0)T arctan [sinh (t/T )] + BT ln [cosh (t/T )] . (A.4.17)

We now change the independent variable from t to z [14],

z =
sinh (t/T )− i

sinh (t/T ) + i
, (A.4.18)
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and denote Cn(z) = cn(t(z)) (n = 1, 2). As t changes from −∞ to ∞, the variable z changes

from 1 to e2πi. By following the derivation of Carroll and Hioe [14], we obtain the following

solution for C1(z) in terms of the Gauss hypergeometric function F (a, b; c; z) [48],

C1(z) = z−r−(σ−iγ+iβ)/4 (A.4.19)

×
[
Az2rF (−iβ/2 + r + q,−iβ/2 + r − q; 1 + 2r; z)

+BF (−iβ/2− r + q,−iβ/2− r − q; 1− 2r; z)

]
,

where

r = 1
4

√
α2 + (σ + iβ − iγ)2, (A.4.20a)

q = 1
4

√
α2 + (σ − iβ − iγ)2, (A.4.20b)

and

α = Ω0T, σ = S0T, γ = Γ0T, β = BT. (A.4.21)

The integration constants A and B can be determined from the initial conditions c1(−∞) = 1,

c2(−∞) = 0:

A =
Γ(−iβ)Γ(−2r)

Γ(−r + q − iβ/2)Γ(−r − q − iβ/2)
, (A.4.22a)

B =
Γ(−iβ)Γ(2r)

Γ(r + q − iβ/2)Γ(r − q − iβ/2)
. (A.4.22b)

Then the solution for C1(z) reads

C1(z) = z−(σ−iγ+iβ)/4

×
[
z−r Γ(−iβ)Γ(2r)

Γ(−iβ/2 + r + q)Γ(−iβ/2 + r − q)

× F (−iβ/2− r + q,−iβ/2− r − q; 1− 2r; z)

+ zr Γ(−iβ)Γ(−2r)

Γ(−iβ/2− r + q)Γ(−iβ/2− r − q)

× F (−iβ/2 + r + q,−iβ/2 + r − q; 1 + 2r; z)

]
(A.4.23)

In a similar manner we derive the solution for the probability amplitude C2(z), by using
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Eq. (A.4.16a),

C2(z) = −α

4
2iβz(σ−iγ+iβ)/4−reπ(β−iσ+γ)/2

×
[

Γ(1− iβ)Γ(2r)

Γ(1− iβ/2 + r + q)Γ(1− iβ/2 + r − q)

× F (iβ/2− r + q, iβ/2− r − q; 1− 2r; z)

+ z2r Γ(1− iβ)Γ(−2r)

Γ(1− iβ/2− r + q)Γ(1− iβ/2− r − q)

× F (iβ/2 + r + q, iβ/2 + r − q; 1 + 2r; z)

]
. (A.4.24)

From Eqs. (A.4.23) and (A.4.24), and recalling the transformation (A.4.15), one can derive the

propagator elements U11 and U21 in the original basis by using the Gauss summation formula

F (a, b; c; 1) =
Γ(c− a + b)Γ(c)

Γ(c− a)Γ(c− b)
. (A.4.25)

The result is

U11(∞) = e−π(iσ+γ)/2 eπβ/2 cos 2πq − e−πβ/2 cos 2πr

sinh πβ
, (A.4.26a)

U21(∞) = −i
πα

2
2iβ(cosh tf )

−iβe−π(γ+iσ)/2Γ(1− iβ)2

× [Γ (1− iβ/2 + r + q) Γ (1− iβ/2 + r − q)

× Γ (1− iβ/2− r + q) Γ (1− iβ/2− r − q)]−1.

(A.4.26b)

In a similar fashion, we can derive the solution for the model (1.19) for the initial conditions

c1(−∞) = 0, c2(−∞) = 1, which will give us the propagator elements U12 and U22. We use

that Eqs. (A.4.16) are of the same form as for initial conditions c1(−∞) = 1, c2(−∞) = 0, but

for ∆ → −∆, i.e. β → −β, σ → −σ, γ → −γ, r → r, q → q. By using Eqs. (A.4.15) and

(A.4.17) we obtain

U12(∞) = −i
πα

2
2−iβ(cosh tf )

iβe−π(γ+iσ)/2Γ(1 + iβ)2

× [Γ (1 + iβ/2 + r + q) Γ (1 + iβ/2 + r − q)

× Γ (1 + iβ/2− r + q) Γ (1 + iβ/2− r − q)]−1, (A.4.27a)

U22(∞) = e−π(iσ+γ)/2 eπβ/2 cos 2πr − e−πβ/2 cos 2πq

sinh πβ
. (A.4.27b)

The transition probabilities Pm→n = |Unm(e2πi)|2 are given explicitly by Eqs. (2.16) and (2.17).
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[40] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Func-

tions (McGraw-Hill, New York, 1953).

[41] N. V. Vitanov and K.-A. Suominen, Phys. Rev. A 56, R4377 (1997).

[42] N. V. Vitanov, J. Phys. B 31, 709 (1998).

[43] P. A. Ivanov, N. V. Vitanov and M. B. Plenio, Phys. Rev. A 78, 012323 (2008); I. E.

Linington, P. A. Ivanov and N. V. Vitanov, Phys. Rev. A 79, 012322 (2009).

[44] N. V. Vitanov, New J. Phys 9, 58 (2007).

[45] R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).



Bibliography 110

[46] N. V. Vitanov and P. L. Knight, Opt. Commun. 121, 31 (1995).

[47] T. Brixner, T. Pfeifer, G. Gerber, M. Wollenhaupt and T. Baumert, in Femtosecond Laser

Spectroscopy edited by P. Hannaford (Springer, New York, 2005), Chap 9.

[48] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New

York, 1964).

[49] N. V. Vitanov and B. M. Garraway, Phys. Rev. A 53, 4288 (1996).

[50] F. W. J. Olver, J. Res. Nat. Bur. Stand. B 63, 131 (1959).

[51] N. V. Vitanov, J. Phys. B 27, 1351 (1994); N. V. Vitanov and P. L. Knight, J. Phys. B

28, 1905 (1995).

[52] G. S. Vasilev and N. V. Vitanov, Phys. Rev. A 73, 023416 (2006).

[53] A. Karpati, Z. Kis, and P. Adam, Phys. Rev. Lett. 93, 193003 (2004).

[54] P.A. Ivanov, E.S. Kyoseva and N.V. Vitanov, Phys. Rev A 74, 022323 (2006).

[55] A. S. Householder, J. ACM 5, 339 (1958).

[56] J. H. Wilkinson, Comput. J. 3, 23 (1960); Numer. Math. 4, 354 (1962); J. M. Ortega,

Numer. Math. 5, 211 (1963); D. J. Mueller, Numer. Math. 8, 72 (1966).

[57] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Phys. Rev. Lett. 73, 58 (1994). A.

Muthukrishnan and C. R. Stroud Jr., Phys. Rev. A 62, 052309 (2000); G. K. Brennen,

D. P. O’Leary and S. S. Bullock, Phys. Rev. A 71, 052318 (2005); S. S. Bullock, D.

P. O’Leary and G. K. Brennen, Phys. Rev. Lett. 94, 230502 (2005); A. B. Klimov, R.

Guzmán, J. C. Retamal, and C. Saavedra, Phys. Rev. A 67, 062313 (2003).

[58] R. Jozsa, Proc. R. Soc. Lond. A 454, 323 (1998).

[59] C. M. Bowden, G. Chen, Z. Diao, A. Klappenecker, J. Math. Anal. Appl. 274, 69 (2002).

[60] P. W. Shor, in Proceedings of the 35th Annual Symposium on the Foundations of Com-

puter Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA,

1994), p. 124; SIAM J. Sci. Statist. Comput. 26, 1484 (1997); arXiv:quant-ph/9508027v2.

[61] D. Deutsch, Proc. R. Soc. Lond. A 400, 97 (1985); D. Deutsch and R. Jozsa, Proc. R.

Soc. Lond. A 439, 553 (1992).



Bibliography 111

[62] D. R. Simon, in Proceedings of the 35th Annual Symposium on the Foundations of

Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA,

1994), p. 116; SIAM J. Comput. 26, 1474 (1997).

[63] D. Coppersmith, arXiv:quant-ph/0201067v1 (1994 IBM Internal Report).

[64] Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and D. G. Cory, Phys. Rev.

Lett. 86, 1889 (2001).

[65] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, R. Cleve, and I. L. Chuang,

Phys. Rev. Lett. 85, 5452 (2000)

[66] J.-S. Lee, J. Kim, Y. Cheong, and S. Lee, Phys. Rev. A. 66, 042316 (2002).

[67] L. M. K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M. H. Sherwood, and I. L.

Chuang, Nature 414, 883 (2001).

[68] J. Chiaverini, J. Britton, D. Leibfried, E. Knill, M.D. Barrett, R. B. Blakestad, W. M.

Itano, J. D. Jost, C. Langer, R. Ozeri, T. Schaetz, D. J. Wineland, Science 308, 997

(2005).

[69] B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist,

and A. G. White, Phys. Rev. Lett. 99, 250505 (2007).

[70] C.-Y. Lu, D. E. Browne, T. Yang, J.-W. Pan, Phys. Rev. Lett. 99, 250504 (2007).

[71] M.O. Scully and M. S. Zubairy, Phys. Rev. A 65, 052324 (2002).

[72] A. Muthukrishnan and C. R. Stroud Jr, J. Mod. Opt. 49, 2115 (2002).

[73] P. A. Ivanov and N. V. Vitanov, Phys. Rev. A 77, 012335 (2008).

[74] R. Barak and Y. Ben-Aryeh, J. Opt. Soc. Am. B 231, 24 (2007).

[75] J. W. Cooley and J. W. Tukey, Math. Comput. 19, 297 (1965).

[76] R. Akis, D. K. Ferry, Appl. Phys. Lett. 79 2823 (2001).

[77] X. Peng, Z. Liao, N. Xu, G. Qin, X. Zhou, D. Suter, and J. Du, Phys. Rev. Lett. 101,

220405 (2008).

[78] D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill, Phys. Rev. A 54, 1034 (1996).

[79] A. Barenco, A. Ekert, K.-A. Suominen, and P. Törmä, Phys. Rev. A 54, 139 (1996).
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