

OPTICAL PROPERTIES OF CARBON NANOTUBES AND GRAPHENE
Symmetryadapted phenomenological approach to the properties of SWNTs
·
phonon dispersion of SWNTs [1,2,10,20]
·
elastic properties of isolated SWNTs [2]
·
phonon dispersion of BN SWNTs [9]
·
nonresonant Raman intensity of isolated
SWNTs [1]
Phenomenological approach to the properties of bundles of SWNTs and
isolated MWNTs
·
elastic properties of bundles of SWNTs [3]
·
breathinglike modes of finite and
infinite bundles of SWNTs [4,5], isolated DWNTs [11,16,21,42], and isolated
MWNTs [6]
·
heat capacity of bundles of SWNTs and
isolated MWNTs [7,8]
·
nonresonant Raman intensity of bundles of
SWNTs [4,5] and isolated MWNTs [6]
The following phenomenological models are used: forceconstant model,
valence forcefield model, and bond polarizability model
Symmetryadapted tightbinding approach to the properties of SWNTs
·
electronic band structure [12,13,17,18,23]
(incl. with defects [34,38]), dielectric function, optical transition energies
of SWNTs (Kataura plot); application [26,29,31,32,52]
·
phonon dispersion of SWNTs [18,22,24,30]
(incl. Kohn anomaly and correction to the phonon dispersion [36,37,40])
·
electronphonon scattering in SWNTs
[19,27,30]
·
resonant Raman intensity of the RBM
[14,19,22,25,28,30], G mode [22,25,30] and 2D mode [59,60] of SWNTs
·
shift of the G mode of DWNTs due to
interlayer interaction [53,56,58]
Tightbinding approach to the properties of SLG, BLG, and FLG
·
tightbinding parameters for the
interlayer interactions [47]
·
electronic band structure of SLG (incl.
with defects [35]), BLG [49], and twisted BLG [57]
·
electronic band structure of α, β, and γgraphyne [44] and silicene [51]
·
breathinglike and shear modes of FLG [47]
·
phonon dispersion of SLG [25] (incl. Kohn
anomaly and correction to the phonon dispersion [39,41]) and BLG [49]
·
resonant Raman intensity of the G band and
2D band of SLG [43,48,50,51] (incl. under uniaxial strain [45,46]), silicene [51], and BLG [48,49]
·
resonant Raman intensity of the G band of
twisted BLG [57]
The tightbinding model has ab
initio derived parameters and has no adjustable parameters. It is applied
to the calculation of the electronic band structure, phonon dispersion,
electronic broadening parameter, electronphonon and
electronphoton couplings.
LIST OF PUBLICATIONS
2018
[60] V. N. Popov, Twophonon Raman bands of singlewalled carbon nanotubes: A case
study, Phys. Rev. B 98 (2018) 085413/16, DOI: 10.1103/PhysRevB.98.085413.
[59] Ch. Tyborski, A. Vierck, R. Narula, V. N. Popov,
and J. Maultzsch, Doubleresonant Raman scattering
with optical and acoustic phonons in carbon nantoubes,
Phys. Rev. B 97 (2018) 214306/16. DOI: 10.1103/PhysRevB.97.214306.
[58] V. N. Popov, D. I. Levshov, J.L. Sauvajol,
and M. Paillet, Computational study of the shift of
the G band of doublewalled carbon nanotubes due to interlayer interactions,
Phys. Rev. B 97 (2018) 165417/17. DOI: 10.1103/PhysRevB.97.165417.
[57] V. N. Popov, Raman bands of twisted bilayer graphene, J. Raman Spectroscopy 49
(2018) 3135. DOI: 10.1002/jrs.5189
2017
[56] D. I. Levshov, R. Parret, H.N. Tran,
Th. Michel, Th. Th. Cao, V. Ch. Nguyen, R. Arenal, V. N. Popov, S. B. Rochal,
J.L. Sauvajol, A.A. Zahab,
and M. Paillet, Inner tube photoluminescence of
isolated individual freestanding indexidentified doublewalled carbon
nanotubes, Phys. Rev. B 96 (2017) 195410/17. DOI:
10.1103/PhysRevB.96.195410.
[55] T. I. Milenov, E. Valcheva, and V. N. Popov, Raman Spectroscopic Study
of Defected Graphene Deposited on (001) Si Substrates by CVD, J. Spectroscopy
2017 (2017) 3495432/18. DOI: 10.1155/2017/3495432
[54] T. I. Milenov, I. Avramova, E. Valcheva, G. V. Avdeev, S. Rusev, S. Kolev, I. Balchev, I. Petrov, and V. N. Popov, Deposition of defected
graphene on (001) Si substrates by thermal decomposition of acetone, Superlattices and Microstructures 111 (2017) 4556.
[53] D. I. Levshov, H.N. Tran, T. Michel, T. T. Cao, V. C. Nguyen, R.
Arenal, V. N.
Popov, J.L. Sauvajol, A.A. Zahab,
M. Paillet, Interlayer interaction effects on the G
modes in doublewalled carbon nanotubes with different electronic
configurations, phys. stat. sol. B 254 (2017) 1700251.
2016
[52] H. N.
Tran, J.C. Blancon, J.R. Huntzinger,
R. Arenal, V.
N. Popov, A. A. Zahab, A. Ayari,
A. SanMiguel, F. Vallée, N. Del Fatti,
J.L. Sauvajol, M. Paillet,
Excitonic optical transitions characterized by Raman
excitation profiles in singlewalled carbon nanotubes, Phys. Rev. B 94 (2016)
075430/16.
[51] V. N. Popov and Ph. Lambin, Comparative study of the
twophonon Raman bands of silicene and graphene, 2D
Materials 3 (2016) 025014.
[50] V. N. Popov, Twophonon Raman scattering in graphene for laser excitation beyond the
πplasmon energy, J. Phys.: Conf. Ser. 764
(2016) 012008.
2015
[49] V. N. Popov, Twophonon Raman bands of bilayer graphene: revisited, Carbon 91
(2015) 436444.
[48] V. N. Popov, 2D Raman band of singlelayer and bilayer graphene,
, J. Phys.: Conf. Ser. 682 (2015) 012013.
2014
[47] V. N. Popov and Ch. van Alsenoy, Lowfrequency phonons of
fewlayer graphene within a tightbinding model, Phys. Rev. B 90 (2014) 245429.
2013
[46] V. N. Popov and Ph. Lambin, Theoretical Raman band of
strained graphene, Phys. Rev. B 87 (2013) 155425/17.
[45] V. N. Popov and Ph. Lambin, Theoretical Raman intensity
of the G and 2D bands of strained graphene, Carbon 54 (2013) 86.
[44] V. N. Popov and Ph. Lambin, Theoretical Raman
fingerprints of α, β, and γ graphyne,
Phys. Rev. B 88 (2013) 075427/15.
2012
[43] V. N. Popov and Ph. Lambin, Theoretical polarization
dependence of the twophonon doubleresonant Raman spectra of graphene, Eur.
Phys. J. B 85 (2012) 418.
2011
[42] D. Levshov, T. Than, R. Arenal, V. N. Popov,
R. Parret, M. Paillet, V. Jourdain, A. A. Zahab, T. Michel,
Yu. I. Yuzyuk, and J.L. Sauvajol,
Experimental evidence of a mechanical coupling between layers in an individual
doublewalled carbon nanotube, NanoLett. 11 (2011)
48004804.
[41] V. N. Popov, Nonadiabatic phonon dispersion of graphene, Bulg. J. Phys. 38 (2011)
7284.
2010
[40] V. N. Popov and Ph. Lambin, NonAdiabatic Phonon
Dispersion of Metallic SingleWalled Carbon Nanotubes, Nano Res. 3 (2010)
822–829.
[39] V. N. Popov and Ph. Lambin, Dynamic and charge doping
effects on the phonon dispersion of graphene, Phys. Rev. B 82 (2010) 045406.
[38] V. N. Popov and Ph. Lambin, Intermediate frequency Raman
spectra of defective singlewalled carbon nanotubes, phys. stat. sol. (b) 247
(2010) 892–895.
[37] V. N. Popov and Ph. Lambin, Theoretical phonon dispersion
of armchair and metallic zigzag carbon nanotubes beyond the adiabatic
approximation, phys. stat. sol. (b) 247 (2010), 2784–2788.
[36] V. N. Popov, Theoretical study of the doping effects on the phonon dispersion of
metallic carbon nanotubes, Physica E 44 (2010)
10321035.
2009
[35] V. N. Popov, L. Henrard, and Ph. Lambin,
Theoretical Raman spectra of graphene with point defects, Carbon 47 (2009)
24482455.
[34] V. N. Popov and Ph. Lambin, Theoretical Raman intensity
of carbon nanotube (7,0) with point defects, phys.
stat. sol. (b) 246 (2009) 26022605.
2008
[33] A. Débarre, M. Kobylko, A. M. Bonnot, A. Richard, V.
N. Popov, L. Henrard, and M. Kociak,
Electronic and Mechanical Coupling of Carbon Nanotubes: A Tunable
Resonant Raman Study of Systems with Known Structures, Phys. Rev. Lett. 101
(2008) 197403.
2007
[32] T.
Michel, M. Paillet, J.C. Meyer, V. N. Popov, L. Henrard, and J.L. Sauvajol, E33 and E44 optical transitions in semiconducting
singlewalled carbon nanotubes: Electron diffraction and Raman experiments,
Phys. Rev. B 75 (2007) 155432/15.
[31] A. Jungen, V. N. Popov,
C. Stampfer, L. Durrer, S.
Stoll, and C. Hierold, Raman intensity mapping of
singlewalled carbon nanotubes, Phys. Rev. B 75 (2007) 041405(R)/14.
[30] V. N. Popov and Ph. Lambin, Symmetryadapted
tightbinding calculations of the phonon dispersion and the resonant Raman
intensity of the totally symmetric phonons of singlewalled carbon nanotubes, Physica E 37 (2007) 97104.
[29] T.
Michel, M. Paillet, J.C. Meyer, V. N. Popov , L. Henrard, P. Poncharal, A. Zahab, and J.L. Sauvajol, Raman spectroscopy of (n,m)identified individual singlewalled carbon
nanotubes, phys. stat. sol. (b) 244 (2007) 39863991.
[28] V. N. Popov and Ph. Lambin, Theoretical Raman intensity
of the RBM of SWNTs, phys. stat. sol. (b) 244 (2007) 42694274
2006
[27] V. N. Popov and Ph. Lambin, Intraband
electronphonon scattering in singlewalled carbon nanotubes, Phys. Rev. B 74
(2006) 075415.
[26] M. Paillet, T. Michel, J. C. Meyer, V. N. Popov, L. Henrard, S. Roth, and
J.L. Sauvajol, Ramanactive phonons of identified
semiconducting singlewalled carbon nanotubes, Phys. Rev. Lett. 96 (2006)
257401.
[25] V. N. Popov and Ph. Lambin, Resonant Raman intensity of
the totally symmetric phonons of singlewalled carbon nanotubes, Phys. Rev. B
73 (2006) 165425/111.
[24] V. N. Popov and Ph. Lambin, Radius and chirality
dependence of the radialbreathing mode and the Gband phonon modes of
singlewalled carbon nanotubes, Phys. Rev. B 73 (2006) 085407/19.
[23] Ph. Lambin and V. N.
Popov, Carbon Nanotubes: Electronic Structure and Physical Properties, in
The Encyclopedia of Materials, Science and
Technology, 2006 Online Update, Elsevier Ltd, doi:10.1016/B0080431526/02129X.
[22] V. N. Popov and Ph. Lambin, Symmetryadapted
tightbinding calculations of the phonon dispersion and the resonant Raman
intensity of the totally symmetric phonons of singlewalled carbon nanotubes,
phys. stat. sol. (b) 243 (2006) 34803484.
[21] H. Rauf,
T. Pichler, R. Pfeiffer, F. Simon, H. Kuzmany, and V. N.
Popov, A Raman study of potassiumintercalated doublewall carbon
nanotubes, Phys. Rev. B 74 (2006) 235419/110.
2005
[20] V. N. Popov and M. Balkanski, Lattice dynamics of carbon
nanotubes, in: Current Topics in Physics. In Honor of
Sir Roger J. Elliott. R. A. Barrio & K. K. Kaski
(Eds.), Imperial College Press, 2005, 113150.
[19] V. N. Popov, L. Henrard, and Ph. Lambin,
Electronphonon and electronphoton interactions and resonant Raman scattering
from the radialbreathing mode of singlewalled carbon nanotubes, Phys. Rev. B
72 (2005) 035436/110.
[18] V. N. Popov and Ph. Lambin, Electronic and Vibrational Properties
of SingleWalled Carbon Nanotubes, Bulg. J. Phys. 25 (2005) 237256.
[17] V. N. Popov and L. Henrard, Optical properties of
singlewalled carbon nanotubes within a nonorthogonal tightbinding model,
Fullerenes, Nanotubes, and Carbon Nanostructures, Vol. 13, Suppl.1, 2005,
4552.
[16] R.
Pfeiffer, F. Simon, H. Kuzmany, and V. N. Popov, Fine structure of the
radial breathing mode of doublewall carbon nanotubes, Phys. Rev. B 72 (2005)
161404(R)/14.
2004
[15] V. N. Popov, Carbon nanotubes: properties and application, Mater. Science Eng. R43
(2004) 61102.
[14] V. N. Popov, L. Henrard, and Ph. Lambin,
Resonant Raman intensity of the radial breathing mode of singlewalled carbon
nanotubes within a nonorthogonal tightbinding model, Nano Letters 4 (2004)
17951799.
[13] V. N. Popov, Curvature effects on the structural, electronic and optical properties
of isolated singlewalled carbon nanotubes within a symmetryadapted
nonorthogonal tightbinding model, New Journal of Physics 6 (2004) 17/117.
[12] V. N. Popov and L. Henrard, Comparative study of the
optical properties of singlewalled carbon nanotubes within orthogonal and
nonorthogonal tightbinding models, Phys. Rev. B 70 (2004) 115407/112.
[11] R.
Pfeiffer, Ch. Kramberger, F. Simon, H. Kuzmany, V. N. Popov,
and H. Kataura, Interaction between Inner and Outer
Tubes in DWCNTs, Eur. Phys. J. B 42 (2004) 345350.
[10] Z. M. Li,
V. N. Popov, and Z. K. Tang, A
symmetryadapted forceconstant latticedynamical model for singlewalled
carbon nanotubes, Solid State Commun. 130 (2004)
657661.
2003
[9] V. N. Popov, Lattice dynamics of singlewalled boron nitride nanotubes, Phys. Rev.
B 67 (2003) 085408/16.
[8] V. N. Popov, Theoretical evidence for
T1/2 specific heat behavior in carbon nanotube
systems, Carbon 42 (2003) 991995.
2002
[7] V. N. Popov, Lowtemperature specific heat of nanotube systems, Phys. Rev. B 66
(2002) 153408/14.
[6] V. N. Popov and L. Henrard, Breathinglike
phonon modes in multiwalled carbon nanotubes, Phys.
Rev. B 65 (2002) 235415/16.
2001
[5] V. N. Popov and L. Henrard, Evidence for the existence of
two breathinglike phonon modes in infinite bundles of
singlewalled carbon nanotubes, Phys. Rev. B 63 (2001) 233407233410.
[4] L. Henrard, V. N. Popov,
and A. Rubio, Influence of Packing on the Vibrational Properties of Infinite
and Finite Bundles of Carbon Nanotubes, Phys. Rev. B 64 (2001) 205403/110.
2000
[3] V. N. Popov, V. E. Van Doren, and M. Balkanski,
Elastic properties of crystals of singlewalled carbon nanotubes, Solid State Commun. 114 (2000) 395399.
[2] V. N. Popov, V. E. Van Doren, and M. Balkanski,
Elastic properties of singlewalled carbon nanotubes, Phys. Rev. B 61 (2000)
30783084.
1999
[1] V. N. Popov, V. E. Van Doren, and M. Balkanski,
Lattice dynamics of singlewalled carbon nanotubes, Phys. Rev. B 59 (1999)
83558358.
Valentin Popov
August 01, 2018