Valentin Popov's NANOTUBE AND GRAPHENE PROJECT

 

 

OPTICAL PROPERTIES OF CARBON NANOTUBES AND GRAPHENE

Symmetry-adapted phenomenological approach to the properties of SWNTs

·         phonon dispersion of SWNTs [1,2,10,20]

·         elastic properties of isolated SWNTs [2]

·         phonon dispersion of BN SWNTs [9]

·         non-resonant Raman intensity of isolated SWNTs [1]

Phenomenological approach to the properties of bundles of SWNTs and isolated MWNTs

·         elastic properties of bundles of SWNTs [3]

·         breathing-like modes of finite and infinite bundles of SWNTs [4,5], isolated DWNTs [11,16,21,42], and isolated MWNTs [6]

·         heat capacity of bundles of SWNTs and isolated MWNTs [7,8]

·         non-resonant Raman intensity of bundles of SWNTs [4,5] and isolated MWNTs [6]

The following phenomenological models are used: force-constant model, valence force-field model, and bond polarizability model

 

Symmetry-adapted tight-binding approach to the properties of SWNTs

·         electronic band structure [12,13,17,18,23] (incl. with defects [34,38]), dielectric function, optical transition energies of SWNTs (Kataura plot); application [26,29,31,32,52]

·         phonon dispersion of SWNTs [18,22,24,30] (incl. Kohn anomaly and correction to the phonon dispersion [36,37,40])

·         electron-phonon scattering in SWNTs [19,27,30]

·         resonant Raman intensity of the RBM [14,19,22,25,28,30], G mode [22,25,30] and 2D mode [59,60] of SWNTs

·         shift of the G mode of DWNTs due to interlayer interaction [53,56,58]

Tight-binding approach to the properties of SLG, BLG, and FLG

·         tight-binding parameters for the interlayer interactions [47]

·         electronic band structure of SLG (incl. with defects [35]), BLG [49], and twisted BLG [57]

·         electronic band structure of α-, β-, and γ-graphyne [44] and silicene [51]

·         breathing-like and shear modes of FLG [47]

·         phonon dispersion of SLG [25] (incl. Kohn anomaly and correction to the phonon dispersion [39,41]) and BLG [49]

·         resonant Raman intensity of the G band and 2D band of SLG [43,48,50,51] (incl. under uniaxial strain [45,46]), silicene [51], and BLG [48,49]

·         resonant Raman intensity of the G band of twisted BLG [57]

The tight-binding model has ab initio derived parameters and has no adjustable parameters. It is applied to the calculation of the electronic band structure, phonon dispersion, electronic broadening parameter, electron-phonon and electron-photon couplings.

 

 

LIST OF PUBLICATIONS

 

2018

[60] V. N. Popov, Two-phonon Raman bands of single-walled carbon nanotubes: A case study, Phys. Rev. B 98 (2018) 085413/1-6, DOI: 10.1103/PhysRevB.98.085413.

[59] Ch. Tyborski, A. Vierck, R. Narula, V. N. Popov, and J. Maultzsch, Double-resonant Raman scattering with optical and acoustic phonons in carbon nantoubes, Phys. Rev. B 97 (2018) 214306/1-6. DOI: 10.1103/PhysRevB.97.214306.

[58] V. N. Popov, D. I. Levshov, J.-L. Sauvajol, and M. Paillet, Computational study of the shift of the G band of double-walled carbon nanotubes due to interlayer interactions, Phys. Rev. B 97 (2018) 165417/1-7. DOI: 10.1103/PhysRevB.97.165417.

[57] V. N. Popov, Raman bands of twisted bilayer graphene, J. Raman Spectroscopy 49 (2018) 31-35. DOI: 10.1002/jrs.5189

 

2017

[56] D. I. Levshov, R. Parret, H.-N. Tran, Th. Michel, Th. Th. Cao, V. Ch. Nguyen, R. Arenal, V. N. Popov, S. B. Rochal, J.-L. Sauvajol, A.-A. Zahab, and M. Paillet, Inner tube photoluminescence of isolated individual free-standing index-identified double-walled carbon nanotubes, Phys. Rev. B 96 (2017) 195410/1-7. DOI: 10.1103/PhysRevB.96.195410.

[55] T. I. Milenov, E. Valcheva, and V. N. Popov, Raman Spectroscopic Study of Defected Graphene Deposited on (001) Si Substrates by CVD, J. Spectroscopy 2017 (2017) 3495432/1-8. DOI: 10.1155/2017/3495432

[54] T. I. Milenov, I. Avramova, E. Valcheva, G. V. Avdeev, S. Rusev, S. Kolev, I. Balchev, I. Petrov, and V. N. Popov, Deposition of defected graphene on (001) Si substrates by thermal decomposition of acetone, Superlattices and Microstructures 111 (2017) 45-56.

[53] D. I. Levshov, H.-N. Tran, T. Michel, T. T. Cao, V. C. Nguyen, R. Arenal, V. N. Popov, J.-L. Sauvajol, A.-A. Zahab, M. Paillet, Interlayer interaction effects on the G modes in double-walled carbon nanotubes with different electronic configurations, phys. stat. sol. B 254 (2017) 1700251.

 

2016

[52] H. N. Tran, J.-C. Blancon, J.-R. Huntzinger, R. Arenal, V. N. Popov, A. A. Zahab, A. Ayari, A. San-Miguel, F. Vallée, N. Del Fatti, J.-L. Sauvajol, M. Paillet, Excitonic optical transitions characterized by Raman excitation profiles in single-walled carbon nanotubes, Phys. Rev. B 94 (2016) 075430/1-6.

[51] V. N. Popov and Ph. Lambin, Comparative study of the two-phonon Raman bands of silicene and graphene, 2D Materials 3 (2016) 025014.

[50] V. N. Popov, Two-phonon Raman scattering in graphene for laser excitation beyond the π-plasmon energy, J. Phys.: Conf. Ser. 764 (2016) 012008.

 

2015

[49] V. N. Popov, Two-phonon Raman bands of bilayer graphene: revisited, Carbon 91 (2015) 436-444.

[48] V. N. Popov, 2D Raman band of single-layer and bilayer graphene, , J. Phys.: Conf. Ser. 682 (2015) 012013.

 

2014

[47] V. N. Popov and Ch. van Alsenoy, Low-frequency phonons of few-layer graphene within a tight-binding model, Phys. Rev. B 90 (2014) 245429.

 

2013

[46] V. N. Popov and Ph. Lambin, Theoretical Raman band of strained graphene, Phys. Rev. B 87 (2013) 155425/1-7.

[45] V. N. Popov and Ph. Lambin, Theoretical Raman intensity of the G and 2D bands of strained graphene, Carbon 54 (2013) 86.

[44] V. N. Popov and Ph. Lambin, Theoretical Raman fingerprints of α-, β-, and γ -graphyne, Phys. Rev. B 88 (2013) 075427/1-5.

 

2012

[43] V. N. Popov and Ph. Lambin, Theoretical polarization dependence of the two-phonon double-resonant Raman spectra of graphene, Eur. Phys. J. B 85 (2012) 418.

 

2011

[42] D. Levshov, T. Than, R. Arenal, V. N. Popov, R. Parret, M. Paillet, V. Jourdain, A. A. Zahab, T. Michel, Yu. I. Yuzyuk, and J.-L. Sauvajol, Experimental evidence of a mechanical coupling between layers in an individual double-walled carbon nanotube, NanoLett. 11 (2011) 4800-4804.

[41] V. N. Popov, Non-adiabatic phonon dispersion of graphene, Bulg. J. Phys. 38 (2011) 72-84.

 

2010

[40] V. N. Popov and Ph. Lambin, Non-Adiabatic Phonon Dispersion of Metallic Single-Walled Carbon Nanotubes, Nano Res. 3 (2010) 822–829.

[39] V. N. Popov and Ph. Lambin, Dynamic and charge doping effects on the phonon dispersion of graphene, Phys. Rev. B 82 (2010) 045406.

[38] V. N. Popov and Ph. Lambin, Intermediate frequency Raman spectra of defective single-walled carbon nanotubes, phys. stat. sol. (b) 247 (2010) 892–895.

[37] V. N. Popov and Ph. Lambin, Theoretical phonon dispersion of armchair and metallic zigzag carbon nanotubes beyond the adiabatic approximation, phys. stat. sol. (b) 247 (2010), 2784–2788.

[36] V. N. Popov, Theoretical study of the doping effects on the phonon dispersion of metallic carbon nanotubes, Physica E 44 (2010) 1032-1035.

 

2009

[35] V. N. Popov, L. Henrard, and Ph. Lambin, Theoretical Raman spectra of graphene with point defects, Carbon 47 (2009) 2448-2455.

[34] V. N. Popov and Ph. Lambin, Theoretical Raman intensity of carbon nanotube (7,0) with point defects, phys. stat. sol. (b) 246 (2009) 2602-2605.

 

2008

[33] A. Débarre, M. Kobylko, A. M. Bonnot, A. Richard, V. N. Popov, L. Henrard, and M. Kociak, Electronic and Mechanical Coupling of Carbon Nanotubes: A Tunable Resonant Raman Study of Systems with Known Structures, Phys. Rev. Lett. 101 (2008) 197403.

 

2007

[32] T. Michel, M. Paillet, J.C. Meyer, V. N. Popov, L. Henrard, and J.-L. Sauvajol, E33 and E44 optical transitions in semiconducting single-walled carbon nanotubes: Electron diffraction and Raman experiments, Phys. Rev. B 75 (2007) 155432/1-5.

[31] A. Jungen, V. N. Popov, C. Stampfer, L. Durrer, S. Stoll, and C. Hierold, Raman intensity mapping of single-walled carbon nanotubes, Phys. Rev. B 75 (2007) 041405(R)/1-4.

[30] V. N. Popov and Ph. Lambin, Symmetry-adapted tight-binding calculations of the phonon dispersion and the resonant Raman intensity of the totally symmetric phonons of single-walled carbon nanotubes, Physica E 37 (2007) 97-104.

[29] T. Michel, M. Paillet, J.C. Meyer, V. N. Popov , L. Henrard, P. Poncharal, A. Zahab, and J.-L. Sauvajol, Raman spectroscopy of (n,m)-identified individual single-walled carbon nanotubes, phys. stat. sol. (b) 244 (2007) 3986-3991.

[28] V. N. Popov and Ph. Lambin, Theoretical Raman intensity of the RBM of SWNTs, phys. stat. sol. (b) 244 (2007) 4269-4274

 

2006

[27] V. N. Popov and Ph. Lambin, Intraband electron-phonon scattering in single-walled carbon nanotubes, Phys. Rev. B 74 (2006) 075415.

[26] M. Paillet, T. Michel, J. C. Meyer, V. N. Popov, L. Henrard, S. Roth, and J.-L. Sauvajol, Raman-active phonons of identified semiconducting single-walled carbon nanotubes, Phys. Rev. Lett. 96 (2006) 257401.

[25] V. N. Popov and Ph. Lambin, Resonant Raman intensity of the totally symmetric phonons of single-walled carbon nanotubes, Phys. Rev. B 73 (2006) 165425/1-11.

[24] V. N. Popov and Ph. Lambin, Radius and chirality dependence of the radial-breathing mode and the G-band phonon modes of single-walled carbon nanotubes, Phys. Rev. B 73 (2006) 085407/1-9.

[23] Ph. Lambin and V. N. Popov, Carbon Nanotubes: Electronic Structure and Physical Properties, in The Encyclopedia of Materials, Science and Technology, 2006 Online Update, Elsevier Ltd, doi:10.1016/B0-08-043152-6/02129-X.

[22] V. N. Popov and Ph. Lambin, Symmetry-adapted tight-binding calculations of the phonon dispersion and the resonant Raman intensity of the totally symmetric phonons of single-walled carbon nanotubes, phys. stat. sol. (b) 243 (2006) 3480-3484.

[21] H. Rauf, T. Pichler, R. Pfeiffer, F. Simon, H. Kuzmany, and V. N. Popov, A Raman study of potassium-intercalated double-wall carbon nanotubes, Phys. Rev. B 74 (2006) 235419/1-10.

 

2005

[20] V. N. Popov and M. Balkanski, Lattice dynamics of carbon nanotubes, in: Current Topics in Physics. In Honor of Sir Roger J. Elliott. R. A. Barrio & K. K. Kaski (Eds.), Imperial College Press, 2005, 113-150.

[19] V. N. Popov, L. Henrard, and Ph. Lambin, Electron-phonon and electron-photon interactions and resonant Raman scattering from the radial-breathing mode of single-walled carbon nanotubes, Phys. Rev. B 72 (2005) 035436/1-10.

[18] V. N. Popov and Ph. Lambin, Electronic and Vibrational Properties of Single-Walled Carbon Nanotubes, Bulg. J. Phys. 25 (2005) 237-256.

[17] V. N. Popov and L. Henrard, Optical properties of single-walled carbon nanotubes within a non-orthogonal tight-binding model, Fullerenes, Nanotubes, and Carbon Nanostructures, Vol. 13, Suppl.1, 2005, 45-52.

[16] R. Pfeiffer, F. Simon, H. Kuzmany, and V. N. Popov, Fine structure of the radial breathing mode of double-wall carbon nanotubes, Phys. Rev. B 72 (2005) 161404(R)/1-4.

 

2004

[15] V. N. Popov, Carbon nanotubes: properties and application, Mater. Science Eng. R43 (2004) 61-102.

[14] V. N. Popov, L. Henrard, and Ph. Lambin, Resonant Raman intensity of the radial breathing mode of single-walled carbon nanotubes within a non-orthogonal tight-binding model, Nano Letters 4 (2004) 1795-1799.

[13] V. N. Popov, Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model, New Journal of Physics 6 (2004) 17/1-17.

[12] V. N. Popov and L. Henrard, Comparative study of the optical properties of single-walled carbon nanotubes within orthogonal and non-orthogonal tight-binding models, Phys. Rev. B 70 (2004) 115407/1-12.

[11] R. Pfeiffer, Ch. Kramberger, F. Simon, H. Kuzmany, V. N. Popov, and H. Kataura, Interaction between Inner and Outer Tubes in DWCNTs, Eur. Phys. J. B 42 (2004) 345-350.

[10] Z. M. Li, V. N. Popov, and Z. K. Tang, A symmetry-adapted force-constant lattice-dynamical model for single-walled carbon nanotubes, Solid State Commun. 130 (2004) 657-661.

 

2003

[9] V. N. Popov, Lattice dynamics of single-walled boron nitride nanotubes, Phys. Rev. B 67 (2003) 085408/1-6.

[8] V. N. Popov, Theoretical evidence for T1/2 specific heat behavior in carbon nanotube systems, Carbon 42 (2003) 991-995.

 

2002

[7] V. N. Popov, Low-temperature specific heat of nanotube systems, Phys. Rev. B 66 (2002) 153408/1-4.

[6] V. N. Popov and L. Henrard, Breathinglike phonon modes in multiwalled carbon nanotubes, Phys. Rev. B 65 (2002) 235415/1-6.

 

2001

[5] V. N. Popov and L. Henrard, Evidence for the existence of two breathinglike phonon modes in infinite bundles of single-walled carbon nanotubes, Phys. Rev. B 63 (2001) 233407-233410.

[4] L. Henrard, V. N. Popov, and A. Rubio, Influence of Packing on the Vibrational Properties of Infinite and Finite Bundles of Carbon Nanotubes, Phys. Rev. B 64 (2001) 205403/1-10.

 

2000

[3] V. N. Popov, V. E. Van Doren, and M. Balkanski, Elastic properties of crystals of single-walled carbon nanotubes, Solid State Commun. 114 (2000) 395-399.

[2] V. N. Popov, V. E. Van Doren, and M. Balkanski, Elastic properties of single-walled carbon nanotubes, Phys. Rev. B 61 (2000) 3078-3084.

 

1999

[1] V. N. Popov, V. E. Van Doren, and M. Balkanski, Lattice dynamics of single-walled carbon nanotubes, Phys. Rev. B 59 (1999) 8355-8358. 

 

 

up

Back

Valentin Popov

August 01, 2018